Elongated pentagonal rotunda | |
---|---|
![]() | |
Type | Johnson J20 - J21 - J22 |
Faces | 2x5 triangles 2x5 squares 1+5 pentagons 1 decagon |
Edges | 55 |
Vertices | 30 |
Vertex configuration | 10(42.10) 10(3.42.5) 2.5(3.5.3.5) |
Symmetry group | C5v |
Dual polyhedron | - |
Properties | convex |
Net | |
![]() |
In geometry, the elongated pentagonal rotunda is one of the Johnson solids (J21). As the name suggests, it can be constructed by elongating a pentagonal rotunda (J6) by attaching a decagonal prism to its base. It can also be seen as an elongated pentagonal orthobirotunda (J42) with one pentagonal rotunda removed.
A Johnson solid is one of 92 strictly convex polyhedra that is composed of regular polygon faces but are not uniform polyhedra (that is, they are not Platonic solids , Archimedean solids , prisms , or antiprisms ). They were named by Norman Johnson , who first listed these polyhedra in 1966. [1]
The following formulae for volume and surface area can be used if all faces are regular, with edge length a: [2]
The dual of the elongated pentagonal rotunda has 30 faces: 10 isosceles triangles, 10 rhombi, and 10 quadrilaterals.
Dual elongated pentagonal rotunda | Net of dual |
---|---|
![]() | ![]() |