Augmented sphenocorona

Last updated
Augmented sphenocorona
Augmented sphenocorona.png
Type Johnson
J86 J87 J88
Faces 16 triangles
1 square
Edges 26
Vertices 11
Vertex configuration 1(34)
2(33.4)
3x2(35)
2(34.4)
Symmetry group Cs
Dual polyhedron -
Properties convex
Net
Johnson solid 87 net.png
3D model of an augmented sphenocorona J87 augmented sphenocorona.stl
3D model of an augmented sphenocorona

In geometry, the augmented sphenocorona is the Johnson solid that can be constructed by attaching an equilateral square pyramid to one of the square faces of the sphenocorona. It is the only Johnson solid arising from "cut and paste" manipulations where the components are not all prisms, antiprisms or sections of Platonic or Archimedean solids.

Contents

Construction

The augmented sphenocorona is constructed by attaching equilateral square pyramid to the sphenocorona, a process known as the augmentation. This pyramid covers one square face of the sphenocorona, replacing them with equilateral triangles. As a result, the augmented sphenocorona has 16 equilateral triangles and 1 square as its faces. [1] The convex polyhedron with its faces are regular is the Johnson solid; the augmented sphenocorona is one of them, enumerated as , the 87th Johnson solid. [2]

Properties

For the edge length , the surface area of an augmented sphenocorona is by summing the area of 16 equilateral triangles and 1 square: [1]

Its volume can be calculated by slicing it into a sphenocorona and an equilateral square pyramid, and adding the volume subsequently: [1]

Related Research Articles

<span class="mw-page-title-main">Gyroelongated square bipyramid</span> 17th Johnson solid

In geometry, the gyroelongated square bipyramid is a polyhedron with 16 triangular faces. it can be constructed from a square antiprism by attaching two equilateral square pyramids to each of its square faces. The same shape is also called hexakaidecadeltahedron, heccaidecadeltahedron, or tetrakis square antiprism; these last names mean a polyhedron with 16 triangular faces. It is an example of deltahedron, and of a Johnson solid.

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid.

<span class="mw-page-title-main">Pentagonal bipyramid</span> Two pentagonal pyramids joined at the bases

In geometry, the pentagonal bipyramid is a polyhedron with 10 triangular faces. It is constructed by attaching two pentagonal pyramids to each of their bases. If the triangular faces are equilateral, the pentagonal bipyramid is an example of deltahedra, and of Johnson solid.

<span class="mw-page-title-main">Gyroelongated square pyramid</span> 10th Johnson solid (13 faces)

In geometry, the gyroelongated square pyramid is the Johnson solid that can be constructed by attaching an equilateral square pyramid to a square antiprism. It occurs in the chemistry such as square antiprismatic molecular geometry.

<span class="mw-page-title-main">Square pyramid</span> Pyramid with a square base

In geometry, a square pyramid is a pyramid with a square base, having a total of five faces. If the apex of the pyramid is directly above the center of the square, it is a right square pyramid with four isosceles triangles; otherwise, it is an oblique square pyramid. When all of the pyramid's edges are equal in length, its triangles are all equilateral, and it is called an equilateral square pyramid.

<span class="mw-page-title-main">Triangular cupola</span> Cupola with hexagonal base

In geometry, the triangular cupola is the cupola with hexagon as its base and triangle as its top. If the edges are equal in length, the triangular cupola is the Johnson solid. It can be seen as half a cuboctahedron. Many polyhedrons can be constructed involving the attachment of the base of a triangular cupola.

<span class="mw-page-title-main">Elongated square cupola</span> 19th Johnson solid

In geometry, the elongated square cupola is one of the Johnson solids. As the name suggests, it can be constructed by elongating a square cupola by attaching an octagonal prism to its base. The solid can be seen as a rhombicuboctahedron with its "lid" removed.

<span class="mw-page-title-main">Gyroelongated square bicupola</span> 45th Johnson solid

In geometry, the gyroelongated square bicupola is the Johnson solid constructed by attaching two square cupolae on each base of octagonal antiprism. It has the property of chirality.

<span class="mw-page-title-main">Snub square antiprism</span> 85th Johnson solid (26 faces)

In geometry, the snub square antiprism is the Johnson solid that can be constructed by snubbing the square antiprism. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids, although it is a relative of the icosahedron that has fourfold symmetry instead of threefold.

<span class="mw-page-title-main">Sphenomegacorona</span> 88th Johnson solid (18 faces)

In geometry, the sphenomegacorona is one of the Johnson solids. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

<span class="mw-page-title-main">Sphenocorona</span> 86th Johnson solid (14 faces)

In geometry, the sphenocorona is one of the Johnson solids. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

<span class="mw-page-title-main">Triangular hebesphenorotunda</span> 92nd Johnson solid (20 faces)

In geometry, the triangular hebesphenorotunda is one of the Johnson solids.

<span class="mw-page-title-main">Elongated triangular pyramid</span> 7th Johnson solid (7 faces)

In geometry, the elongated triangular pyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating a tetrahedron by attaching a triangular prism to its base. Like any elongated pyramid, the resulting solid is topologically self-dual.

<span class="mw-page-title-main">Elongated square pyramid</span> Polyhedron with cube and square pyramid

In geometry, the elongated square pyramid is a convex polyhedron constructed from a cube by attaching an equilateral square pyramid onto one of its faces. It is an example of Johnson solid. It is topologically self-dual.

<span class="mw-page-title-main">Elongated square bipyramid</span> Cube capped by two square pyramids

In geometry, the elongated square bipyramid is the polyhedron constructed by attaching two equilateral square pyramids onto a cube's faces that are opposite each other. It can also be seen as 4 lunes linked together with squares to squares and triangles to triangles. It is also been named the pencil cube or 12-faced pencil cube due to its shape.

<span class="mw-page-title-main">Augmented triangular prism</span> 49th Johnson solid

In geometry, the augmented triangular prism is a polyhedron constructed by attaching an equilateral square pyramid onto the square face of a triangular prism. As a result, it is an example of Johnson solid. It can be visualized as the chemical compound, known as capped trigonal prismatic molecular geometry.

<span class="mw-page-title-main">Biaugmented triangular prism</span> 50th Johnson solid

In geometry, the biaugmented triangular prism is a polyhedron constructed from a triangular prism by attaching two equilateral square pyramids onto two of its square faces. It is an example of Johnson solid.

<span class="mw-page-title-main">Augmented hexagonal prism</span> 54th Johnson solid

In geometry, the augmented hexagonal prism is one of the Johnson solids. As the name suggests, it can be constructed by augmenting a hexagonal prism by attaching a square pyramid to one of its equatorial faces. When two or three such pyramids are attached, the result may be a parabiaugmented hexagonal prism, a metabiaugmented hexagonal prism, or a triaugmented hexagonal prism.

<span class="mw-page-title-main">Elongated triangular orthobicupola</span> Johnson solid with 20 faces

In geometry, the elongated triangular orthobicupola or cantellated triangular prism is a polyhedron constructed by attaching two regular triangular cupola into the base of a regular hexagonal prism. It is an example of Johnson solid.

<span class="mw-page-title-main">Elongated triangular gyrobicupola</span> 36th Johnson solid

In geometry, the elongated triangular gyrobicupola is a polyhedron constructed by attaching two regular triangular cupolas to the base of a regular hexagonal prism, with one of them rotated in . It is an example of Johnson solid.

References

  1. 1 2 3 Berman, Martin (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR   0290245.
  2. Francis, Darryl (2013). "Johnson solids & their acronyms". Word Ways. 46 (3): 177.