Snub square antiprism

Last updated
Snub square antiprism
Snub square antiprism.png
Type Johnson
J84J85J86
Faces 24 triangles
2 squares
Edges 40
Vertices 16
Vertex configuration
Symmetry group
Properties convex
Net
Johnson solid 85 net.png
3D model of a snub square antiprism J85 snub square antiprism.stl
3D model of a snub square antiprism

In geometry, the snub square antiprism is the Johnson solid that can be constructed by snubbing the square antiprism. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids, although it is a relative of the icosahedron that has fourfold symmetry instead of threefold.

Contents

Construction and properties

The snub is the process of constructing polyhedra by cutting loose the edge's faces, twisting them, and then attaching equilateral triangles to their edges. [1] As the name suggested, the snub square antiprism is constructed by snubbing the square antiprism,[ citation needed ] and this construction results in 24 equilateral triangles and 2 squares as its faces. [2] The Johnson solid is the convex polyhedron in which their faces are regular, and the snub square antiprism is one of them, enumerated as , the 85th Johnson solid. [3]

Let be the positive root of the cubic polynomial

Furthermore, let be defined by

Then, Cartesian coordinates of a snub square antiprism with edge length 2 are given by the union of the orbits of the points

under the action of the group generated by a rotation around the -axis by 90° and by a rotation by 180° around a straight line perpendicular to the -axis and making an angle of 22.5° with the -axis. [4] It has the three-dimensional symmetry of dihedral group of order 8. [5]

The surface area and volume of a snub square antiprism with edge length can be calculated as: [2]

Related Research Articles

<span class="mw-page-title-main">Antiprism</span> Polyhedron with parallel bases connected by triangles

In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An.

<span class="mw-page-title-main">Triangular bipyramid</span> 12th Johnson solid; two tetrahedra joined along one face

In geometry, the triangular bipyramid is a type of hexahedron, being the first in the infinite set of face-transitive bipyramids. It is the dual of the triangular prism with 6 isosceles triangle faces.

<span class="mw-page-title-main">Pentagonal bipyramid</span> 13th Johnson solid; two pentagonal pyramids joined at the bases

In geometry, the pentagonal bipyramid is third of the infinite set of face-transitive bipyramids, and the 13th Johnson solid. Each bipyramid is the dual of a uniform prism.

<span class="mw-page-title-main">Elongated pentagonal pyramid</span> 9th Johnson solid (11 faces)

In geometry, the elongated pentagonal pyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating a pentagonal pyramid by attaching a pentagonal prism to its base.

<span class="mw-page-title-main">Square cupola</span> 4th Johnson solid (10 faces)

In geometry, the square cupola, sometimes called lesser dome, is one of the Johnson solids. It can be obtained as a slice of the rhombicuboctahedron. As in all cupolae, the base polygon has twice as many edges and vertices as the top; in this case the base polygon is an octagon.

<span class="mw-page-title-main">Pentagonal cupola</span> 5th Johnson solid (12 faces)

In geometry, the pentagonal cupola is one of the Johnson solids. It can be obtained as a slice of the rhombicosidodecahedron. The pentagonal cupola consists of 5 equilateral triangles, 5 squares, 1 pentagon, and 1 decagon.

<span class="mw-page-title-main">Snub disphenoid</span> 84th Johnson solid (12 triangular faces)

In geometry, the snub disphenoid, Siamese dodecahedron, triangular dodecahedron, trigonal dodecahedron, or dodecadeltahedron is a convex polyhedron with twelve equilateral triangles as its faces. It is not a regular polyhedron because some vertices have four faces and others have five. It is a dodecahedron, one of the eight convex deltahedra, and is the 84th Johnson solid. It can be thought of as a square antiprism where both squares are replaced with two equilateral triangles.

<span class="mw-page-title-main">Hebesphenomegacorona</span> 89th Johnson solid (21 faces)

In geometry, the hebesphenomegacorona is one of the Johnson solids. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids. It has 21 faces, 18 triangles and 3 squares, 33 edges, and 14 vertices.

<span class="mw-page-title-main">Sphenomegacorona</span> 88th Johnson solid (18 faces)

In geometry, the sphenomegacorona is one of the Johnson solids. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

<span class="mw-page-title-main">Sphenocorona</span> 86th Johnson solid (14 faces)

In geometry, the sphenocorona is one of the Johnson solids. It is one of the elementary Johnson solids that do not arise from "cut and paste" manipulations of the Platonic and Archimedean solids.

<span class="mw-page-title-main">Triangular hebesphenorotunda</span> 92nd Johnson solid (20 faces)

In geometry, the triangular hebesphenorotunda is one of the Johnson solids.

<span class="mw-page-title-main">Augmented sphenocorona</span> 87th Johnson solid (17 faces)

In geometry, the augmented sphenocorona is one of the Johnson solids, and is obtained by adding a square pyramid to one of the square faces of the sphenocorona. It is the only Johnson solid arising from "cut and paste" manipulations where the components are not all prisms, antiprisms or sections of Platonic or Archimedean solids.

<span class="mw-page-title-main">Elongated triangular pyramid</span> 7th Johnson solid (7 faces)

In geometry, the elongated triangular pyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating a tetrahedron by attaching a triangular prism to its base. Like any elongated pyramid, the resulting solid is topologically self-dual.

<span class="mw-page-title-main">Elongated square pyramid</span> 8th Johnson solid (9 faces)

In geometry, the elongated square pyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating a square pyramid by attaching a cube to its square base. Like any elongated pyramid, it is topologically self-dual.

<span class="mw-page-title-main">Elongated triangular bipyramid</span> 14th Johnson solid; triangular prism capped with tetrahedra

In geometry, the elongated triangular bipyramid or triakis triangular prism is one of the Johnson solids, convex polyhedra whose faces are regular polygons. As the name suggests, it can be constructed by elongating a triangular bipyramid by inserting a triangular prism between its congruent halves.

<span class="mw-page-title-main">Gyroelongated pentagonal bicupola</span> 46th Johnson solid

In geometry, the gyroelongated pentagonal bicupola is one of the Johnson solids. As the name suggests, it can be constructed by gyroelongating a pentagonal bicupola by inserting a decagonal antiprism between its congruent halves.

<span class="mw-page-title-main">Elongated triangular cupola</span> 18th Johnson solid

In geometry, the elongated triangular cupola is one of the Johnson solids. As the name suggests, it can be constructed by elongating a triangular cupola by attaching a hexagonal prism to its base.

<span class="mw-page-title-main">Gyroelongated triangular cupola</span>

In geometry, the gyroelongated triangular cupola is one of the Johnson solids (J22). It can be constructed by attaching a hexagonal antiprism to the base of a triangular cupola (J3). This is called "gyroelongation", which means that an antiprism is joined to the base of a solid, or between the bases of more than one solid.

<span class="mw-page-title-main">Gyroelongated triangular bicupola</span> 44th Johnson solid

In geometry, the gyroelongated triangular bicupola is one of the Johnson solids. As the name suggests, it can be constructed by gyroelongating a triangular bicupola by inserting a hexagonal antiprism between its congruent halves.

<span class="mw-page-title-main">Gyroelongated pentagonal cupolarotunda</span> 47th Johnson solid

In geometry, the gyroelongated pentagonal cupolarotunda is one of the Johnson solids. As the name suggests, it can be constructed by gyroelongating a pentagonal cupolarotunda by inserting a decagonal antiprism between its two halves.

References

  1. Holme, Audun (2010). Geometry: Our Cultural Heritage. Springer. p. 99. doi:10.1007/978-3-642-14441-7. ISBN   978-3-642-14441-7.
  2. 1 2 Berman, Martin (1971). "Regular-faced convex polyhedra". Journal of the Franklin Institute. 291 (5): 329–352. doi:10.1016/0016-0032(71)90071-8. MR   0290245.
  3. Francis, Darryl (2013). "Johnson solids & their acronyms". Word Ways. 46 (3): 177.
  4. Timofeenko, A. V. (2009). "The non-Platonic and non-Archimedean noncomposite polyhedra". Journal of Mathematical Science. 162 (5): 725. doi:10.1007/s10958-009-9655-0. S2CID   120114341.
  5. Johnson, Norman W. (1966). "Convex polyhedra with regular faces". Canadian Journal of Mathematics . 18: 169–200. doi:10.4153/cjm-1966-021-8. MR   0185507. Zbl   0132.14603.