Cupola (geometry)

Last updated
Set of cupolae
Pentagonal cupola.png
Pentagonal example
Faces n triangles,
n squares,
1 n-gon,
1 2n-gon
Edges 5n
Vertices 3n
Schläfli symbol {n} || t{n}
Symmetry group Cnv, [1,n], (*nn), order 2n
Rotation group Cn, [1,n]+, (nn), order n
Dual polyhedron ?
Properties convex, prismatoid

In geometry, a cupola is a solid formed by joining two polygons, one (the base) with twice as many edges as the other, by an alternating band of isosceles triangles and rectangles. If the triangles are equilateral and the rectangles are squares, while the base and its opposite face are regular polygons, the triangular, square, and pentagonal cupolae all count among the Johnson solids, and can be formed by taking sections of the cuboctahedron, rhombicuboctahedron, and rhombicosidodecahedron, respectively.

Contents

A cupola can be seen as a prism where one of the polygons has been collapsed in half by merging alternate vertices.

A cupola can be given an extended Schläfli symbol {n} || t{n}, representing a regular polygon {n} joined by a parallel of its truncation, t{n} or {2n}.

Cupolae are a subclass of the prismatoids.

Its dual contains a shape that is sort of a weld between half of an n-sided trapezohedron and a 2n-sided pyramid.

Examples

Family of convex cupolae
n2345678
Schläfli symbol {2} || t{2} {3} || t{3} {4} || t{4} {5} || t{5} {6} || t{6} {7} || t{7} {8} || t{8}
Cupola Triangular prism wedge.png
Digonal cupola
Triangular cupola.png
Triangular cupola
Square cupola.png
Square cupola
Pentagonal cupola.png
Pentagonal cupola
Hexagonal cupola flat.png
Hexagonal cupola
(Flat)
Heptagonal cupola.svg
Heptagonal cupola
(Non-regular face)
Octagonal cupola.svg
Octagonal cupola
(Non-regular face)
Related
uniform
polyhedra
Rhombohedron
CDel node 1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node 1.png
Cuboctahedron
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Rhombicuboctahedron
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Rhombicosidodecahedron
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
Rhombitrihexagonal tiling
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Rhombitriheptagonal tiling
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node 1.png
Rhombitrioctagonal tiling
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png
Plane "hexagonal cupolae" in the rhombitrihexagonal tiling Tile 3464.svg
Plane "hexagonal cupolae" in the rhombitrihexagonal tiling

The above-mentioned three polyhedra are the only non-trivial convex cupolae with regular faces: The "hexagonal cupola" is a plane figure, and the triangular prism might be considered a "cupola" of degree 2 (the cupola of a line segment and a square). However, cupolae of higher-degree polygons may be constructed with irregular triangular and rectangular faces.

Coordinates of the vertices

A 40-sided cupola has:
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
40 isosceles triangles;
40 rectangles;
A top regular 40-gon;
and a bottom regular 80-gon (hidden). Cupola 40.png
A 40-sided cupola has:
  40 rectangles;
  A top regular 40-gon;
and a bottom regular 80-gon (hidden).

The definition of the cupola does not require the base (or the side opposite the base, which can be called the top) to be a regular polygon, but it is convenient to consider the case where the cupola has its maximal symmetry, Cnv. In that case, the top is a regular n-gon, while the base is either a regular 2n-gon or a 2n-gon which has two different side lengths alternating and the same angles as a regular 2n-gon. It is convenient to fix the coordinate system so that the base lies in the xy-plane, with the top in a plane parallel to the xy-plane. The z-axis is the n-fold axis, and the mirror planes pass through the z-axis and bisect the sides of the base. They also either bisect the sides or the angles of the top polygon, or both. (If n is even, half of the mirror planes bisect the sides of the top polygon and half bisect the angles, while if n is odd, each mirror plane bisects one side and one angle of the top polygon.) The vertices of the base can be designated through while the vertices of the top polygon can be designated through With these conventions, the coordinates of the vertices can be written as:

for j = 1, 2, ..., n.

Since the polygons etc. are rectangles, this puts a constraint on the values of The distance is equal to

while the distance is equal to

These are to be equal, and if this common edge is denoted by s,

These values are to be inserted into the expressions for the coordinates of the vertices given earlier.

Star-cupolae

{n/d}4578
3 Crossed square cupola.png
{4/3}
Crossed square
cupola
Crossed pentagrammic cupola.png
{5/3}
Crossed pentragrammic
cupola
Heptagrammic cupola.png
{7/3}
Heptagrammic
cupola
Octagrammic cupola.png
{8/3}
Octagrammic
cupola
5 Crossed heptagrammic cupola.png
{7/5}
Crossed heptagrammic
cupola
Crossed octagrammic cupola.png
{8/5}
Crossed octogrammic
cupola
nd357
2 Tetrahemihexahedron.png
{3/2}
Crossed triangular
cuploid
Pentagrammic cuploid.png
{5/2}
Pentagrammic
cuploid
Heptagrammic cuploid.png
{7/2}
Heptagrammic
cuploid
4 Crossed pentagonal cuploid.png
{5/4}
Crossed pentagonal
cuploid
Crossed heptagrammic cuploid.png
{7/4}
Crossed heptagrammic
cuploid

Star cupolae exist for all bases {n/d} where 6/5 < n/d < 6 and d is odd. At the limits the cupolae collapse into plane figures: beyond the limits the triangles and squares can no longer span the distance between the two polygons (it can still be made if the triangles or squares are irregular.). When d is even, the bottom base {2n/d} becomes degenerate: we can form a cupoloid or semicupola by withdrawing this degenerate face and instead letting the triangles and squares connect to each other here. In particular, the tetrahemihexahedron may be seen as a {3/2}-cupoloid. The cupolae are all orientable, while the cupoloids are all nonorientable. When n/d > 2 in a cupoloid, the triangles and squares do not cover the entire base, and a small membrane is left in the base that simply covers empty space. Hence the {5/2} and {7/2} cupoloids pictured above have membranes (not filled in), while the {5/4} and {7/4} cupoloids pictured above do not.

The height h of an {n/d}-cupola or cupoloid is given by the formula

In particular, h = 0 at the limits of n/d = 6 and n/d = 6/5, and h is maximized at n/d = 2 (the triangular prism, where the triangles are upright). [1] [2]

In the images above, the star cupolae have been given a consistent colour scheme to aid identifying their faces: the base {n/d}-gon is red, the base {2n/d}-gon is yellow, the squares are blue, and the triangles are green. The cupoloids have the base {n/d}-gon red, the squares yellow, and the triangles blue, as the other base has been withdrawn.

Hypercupolae

The hypercupolae or polyhedral cupolae are a family of convex nonuniform polychora (here four-dimensional figures), analogous to the cupolas. Each one's bases are a Platonic solid and its expansion. [3]

Name Tetrahedral cupola Cubic cupola Octahedral cupola Dodecahedral cupola Hexagonal tiling cupola
Schläfli symbol {3,3} || rr{3,3} {4,3} || rr{4,3} {3,4} || rr{3,4} {5,3} || rr{5,3} {6,3} || rr{6,3}
Segmentochora
index [3]
K4.23K4.71K4.107K4.152
circumradius
Image 4D Tetrahedral Cupola-perspective-cuboctahedron-first.png 4D Cubic Cupola-perspective-cube-first.png 4D octahedral cupola-perspective-octahedron-first.png Dodecahedral cupola.png
Cap cells Uniform polyhedron-33-t0.png Uniform polyhedron-33-t02.png Uniform polyhedron-43-t0.png Uniform polyhedron-43-t02.png Uniform polyhedron-43-t2.png Uniform polyhedron-43-t02.png Uniform polyhedron-53-t0.png Uniform polyhedron-53-t02.png Uniform tiling 63-t0.png Uniform tiling 63-t02.png
Vertices16323080
Edges428484210
Faces4224 triangles
18 squares
8032 triangles
48 squares
8240 triangles
42 squares
19480 triangles
90 squares
24 pentagons
Cells161 tetrahedron
4 triangular prisms
6 triangular prisms
4 triangular pyramids
1 cuboctahedron
28 1 cube
 6 square prisms
12 triangular prisms
 8 triangular pyramids
 1  rhombicuboctahedron
28 1 octahedron
 8 triangular prisms
12 triangular prisms
 6 square pyramids
 1  rhombicuboctahedron
64 1 dodecahedron
12 pentagonal prisms
30 triangular prisms
20 triangular pyramids
 1  rhombicosidodecahedron
1 hexagonal tiling
hexagonal prisms
triangular prisms
triangular pyramids
1 rhombitrihexagonal tiling
Related
uniform
polychora
runcinated 5-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
runcinated tesseract
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
runcinated 24-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
runcinated 120-cell
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
runcinated hexagonal tiling honeycomb
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

See also

Related Research Articles

<span class="mw-page-title-main">Antiprism</span> Polyhedron with parallel bases connected by triangles

In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An.

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation

<span class="mw-page-title-main">Ellipse</span> Plane curve: conic section

In mathematics, an ellipse is a plane curve surrounding two focal points, such that for all points on the curve, the sum of the two distances to the focal points is a constant. It generalizes a circle, which is the special type of ellipse in which the two focal points are the same. The elongation of an ellipse is measured by its eccentricity , a number ranging from to .

<span class="mw-page-title-main">Window function</span> Function used in signal processing

In signal processing and statistics, a window function is a mathematical function that is zero-valued outside of some chosen interval. Typically, windows functions are symmetric around the middle of the interval, approach a maximum in the middle, and taper away from the middle. Mathematically, when another function or waveform/data-sequence is "multiplied" by a window function, the product is also zero-valued outside the interval: all that is left is the part where they overlap, the "view through the window". Equivalently, and in actual practice, the segment of data within the window is first isolated, and then only that data is multiplied by the window function values. Thus, tapering, not segmentation, is the main purpose of window functions.

In Euclidean geometry, a regular polygon is a polygon that is direct equiangular and equilateral. Regular polygons may be either convex, star or skew. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon, if the edge length is fixed.

<span class="mw-page-title-main">Inverse trigonometric functions</span> Inverse functions of sin, cos, tan, etc.

In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.

<span class="mw-page-title-main">Double factorial</span> Mathematical function

In mathematics, the double factorial of a number n, denoted by n, is the product of all the positive integers up to n that have the same parity as n. That is,

<span class="mw-page-title-main">Spherical trigonometry</span> Geometry of figures on the surface of a sphere

Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and navigation.

<span class="mw-page-title-main">Disdyakis triacontahedron</span> Catalan solid with 120 faces

In geometry, a disdyakis triacontahedron, hexakis icosahedron, decakis dodecahedron or kisrhombic triacontahedron is a Catalan solid with 120 faces and the dual to the Archimedean truncated icosidodecahedron. As such it is face-uniform but with irregular face polygons. It slightly resembles an inflated rhombic triacontahedron: if one replaces each face of the rhombic triacontahedron with a single vertex and four triangles in a regular fashion, one ends up with a disdyakis triacontahedron. That is, the disdyakis triacontahedron is the Kleetope of the rhombic triacontahedron. It is also the barycentric subdivision of the regular dodecahedron and icosahedron. It has the most faces among the Archimedean and Catalan solids, with the snub dodecahedron, with 92 faces, in second place.

<span class="mw-page-title-main">Stable distribution</span> Distribution of variables which satisfies a stability property under linear combinations

In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.

In geometry, the area enclosed by a circle of radius r is πr2. Here the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.

In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.

<span class="mw-page-title-main">Lemniscate elliptic functions</span> Mathematical functions

In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.

<span class="mw-page-title-main">Sine and cosine</span> Fundamental trigonometric functions

In mathematics, sine and cosine are trigonometric functions of an angle. The sine and cosine of an acute angle are defined in the context of a right triangle: for the specified angle, its sine is the ratio of the length of the side that is opposite that angle to the length of the longest side of the triangle, and the cosine is the ratio of the length of the adjacent leg to that of the hypotenuse. For an angle , the sine and cosine functions are denoted simply as and .

There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles. The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.

<span class="mw-page-title-main">Struve function</span>

In mathematics, the Struve functionsHα(x), are solutions y(x) of the non-homogeneous Bessel's differential equation:

Liu Huis <span class="texhtml mvar" style="font-style:italic;">π</span> algorithm Calculation of π by 3rd century mathematician Liu Hui

Liu Hui's π algorithm was invented by Liu Hui, a mathematician of the state of Cao Wei. Before his time, the ratio of the circumference of a circle to its diameter was often taken experimentally as three in China, while Zhang Heng (78–139) rendered it as 3.1724 or as . Liu Hui was not satisfied with this value. He commented that it was too large and overshot the mark. Another mathematician Wang Fan (219–257) provided π ≈ 142/45 ≈ 3.156. All these empirical π values were accurate to two digits. Liu Hui was the first Chinese mathematician to provide a rigorous algorithm for calculation of π to any accuracy. Liu Hui's own calculation with a 96-gon provided an accuracy of five digits: π ≈ 3.1416.

In hyperbolic geometry, the "law of cosines" is a pair of theorems relating the sides and angles of triangles on a hyperbolic plane, analogous to the planar law of cosines from plane trigonometry, or the spherical law of cosines in spherical trigonometry. It can also be related to the relativistic velocity addition formula.

<span class="mw-page-title-main">Dirichlet kernel</span>

In mathematical analysis, the Dirichlet kernel, named after the German mathematician Peter Gustav Lejeune Dirichlet, is the collection of periodic functions defined as

References

  1. "cupolas". www.orchidpalms.com. Retrieved 21 April 2018.
  2. "semicupolas". www.orchidpalms.com. Retrieved 21 April 2018.
  3. 1 2 Convex Segmentochora Dr. Richard Klitzing, Symmetry: Culture and Science, Vol. 11, Nos. 1-4, 139-181, 2000