This article needs additional citations for verification .(March 2024) |
Set of cupolae | |
---|---|
Faces | n triangles, n squares, 1 n-gon, 1 2n-gon |
Edges | 5n |
Vertices | 3n |
Schläfli symbol | {n} || t{n} |
Symmetry group | Cnv, [1,n], (*nn), order 2n |
Rotation group | Cn, [1,n]+, (nn), order n |
Dual polyhedron | Semibisected trapezohedron |
Properties | convex, prismatoid |
In geometry, a cupola is a solid formed by joining two polygons, one (the base) with twice as many edges as the other, by an alternating band of isosceles triangles and rectangles. If the triangles are equilateral and the rectangles are squares, while the base and its opposite face are regular polygons, the triangular, square, and pentagonal cupolae all count among the Johnson solids, and can be formed by taking sections of the cuboctahedron, rhombicuboctahedron, and rhombicosidodecahedron, respectively.
A cupola can be seen as a prism where one of the polygons has been collapsed in half by merging alternate vertices.
A cupola can be given an extended Schläfli symbol {n} || t{n}, representing a regular polygon {n} joined by a parallel of its truncation, t{n} or {2n}.
Cupolae are a subclass of the prismatoids.
Its dual contains a shape that is sort of a weld between half of an n-sided trapezohedron and a 2n-sided pyramid.
n | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|
Schläfli symbol | {2} || t{2} | {3} || t{3} | {4} || t{4} | {5} || t{5} | {6} || t{6} | {7} || t{7} | {8} || t{8} |
Cupola | Digonal cupola | Triangular cupola | Square cupola | Pentagonal cupola | Hexagonal cupola (Flat) | Heptagonal cupola (Non-regular face) | Octagonal cupola (Non-regular face) |
Related uniform polyhedra | Rhombohedron | Cuboctahedron | Rhombicuboctahedron | Rhombicosidodecahedron | Rhombitrihexagonal tiling | Rhombitriheptagonal tiling | Rhombitrioctagonal tiling |
The triangular, square, and pentagonal cupolae are the only non-trivial convex cupolae with regular faces: The "hexagonal cupola" is a plane figure, and the triangular prism might be considered a "cupola" of degree 2 (the cupola of a line segment and a square). However, cupolae of higher-degree polygons may be constructed with irregular triangular and rectangular faces.
The definition of the cupola does not require the base (or the side opposite the base, which can be called the top) to be a regular polygon, but it is convenient to consider the case where the cupola has its maximal symmetry, Cnv. In that case, the top is a regular n-gon, while the base is either a regular 2n-gon or a 2n-gon which has two different side lengths alternating and the same angles as a regular 2n-gon. It is convenient to fix the coordinate system so that the base lies in the xy-plane, with the top in a plane parallel to the xy-plane. The z-axis is the n-fold axis, and the mirror planes pass through the z-axis and bisect the sides of the base. They also either bisect the sides or the angles of the top polygon, or both. (If n is even, half of the mirror planes bisect the sides of the top polygon and half bisect the angles, while if n is odd, each mirror plane bisects one side and one angle of the top polygon.) The vertices of the base can be designated through while the vertices of the top polygon can be designated through With these conventions, the coordinates of the vertices can be written as:
for j = 1, 2, ..., n.
Since the polygons etc. are rectangles, this puts a constraint on the values of The distance is equal to
while the distance is equal to
These are to be equal, and if this common edge is denoted by s,
These values are to be inserted into the expressions for the coordinates of the vertices given earlier.
4 | 5 | 7 | 8 | n⁄d |
---|---|---|---|---|
{4/3} Crossed square cupola (upside down) | {5/3} Crossed pentagrammic cupola (upside down) | {7/3} Heptagrammic cupola | {8/3} Octagrammic cupola | 3 |
— | — | {7/5} Crossed heptagrammic cupola (upside down) | {8/5} Crossed octagrammic cupola | 5 |
3 | 5 | 7 | n⁄d |
---|---|---|---|
{3/2} Crossed triangular cuploid (upside down) | {5/2} Pentagrammic cuploid | {7/2} Heptagrammic cuploid | 2 |
— | {5/4} Crossed pentagonal cuploid (upside down) | {7/4} Crossed heptagrammic cuploid | 4 |
Star cupolae exist for any top base {n/d} where 6/5 < n/d < 6 and d is odd. At these limits, the cupolae collapse into plane figures. Beyond these limits, the triangles and squares can no longer span the distance between the two base polygons (it can still be made with non-equilateral isosceles triangles and non-square rectangles). If d is even, the bottom base {2n/d} becomes degenerate; then we can form a cupoloid or semicupola by withdrawing this degenerate face and letting the triangles and squares connect to each other here (through single edges) rather than to the late bottom base (through its double edges). In particular, the tetrahemihexahedron may be seen as a {3/2}-cupoloid.
The cupolae are all orientable, while the cupoloids are all non-orientable. For a cupoloid, if n/d > 2, then the triangles and squares do not cover the entire (single) base, and a small membrane is placed in this base {n/d}-gon that simply covers empty space. Hence the {5/2}- and {7/2}-cupoloids pictured above have membranes (not filled in), while the {5/4}- and {7/4}-cupoloids pictured above do not.
The height h of an {n/d}-cupola or cupoloid is given by the formula: In particular, h = 0 at the limits n/d = 6 and n/d = 6/5, and h is maximized at n/d = 2 (in the digonal cupola: the triangular prism, where the triangles are upright). [1] [2]
In the images above, the star cupolae have been given a consistent colour scheme to aid identifying their faces: the base {n/d}-gon is red, the base {2n/d}-gon is yellow, the squares are blue, and the triangles are green. The cupoloids have the base {n/d}-gon red, the squares yellow, and the triangles blue, as the base {2n/d}-gon has been withdrawn.
The hypercupolae or polyhedral cupolae are a family of convex nonuniform polychora (here four-dimensional figures), analogous to the cupolas. Each one's bases are a Platonic solid and its expansion. [3]
Name | Tetrahedral cupola | Cubic cupola | Octahedral cupola | Dodecahedral cupola | Hexagonal tiling cupola | |||||
---|---|---|---|---|---|---|---|---|---|---|
Schläfli symbol | {3,3} || rr{3,3} | {4,3} || rr{4,3} | {3,4} || rr{3,4} | {5,3} || rr{5,3} | {6,3} || rr{6,3} | |||||
Segmentochora index [3] | K4.23 | K4.71 | K4.107 | K4.152 | ||||||
circumradius | ||||||||||
Image | ||||||||||
Cap cells | ||||||||||
Vertices | 16 | 32 | 30 | 80 | ∞ | |||||
Edges | 42 | 84 | 84 | 210 | ∞ | |||||
Faces | 42 | 24 triangles 18 squares | 80 | 32 triangles 48 squares | 82 | 40 triangles 42 squares | 194 | 80 triangles 90 squares 24 pentagons | ∞ | |
Cells | 16 | 1 tetrahedron 4 triangular prisms 6 triangular prisms 4 triangular pyramids 1 cuboctahedron | 28 | 1 cube 6 square prisms 12 triangular prisms 8 triangular pyramids 1 rhombicuboctahedron | 28 | 1 octahedron 8 triangular prisms 12 triangular prisms 6 square pyramids 1 rhombicuboctahedron | 64 | 1 dodecahedron 12 pentagonal prisms 30 triangular prisms 20 triangular pyramids 1 rhombicosidodecahedron | ∞ | 1 hexagonal tiling ∞ hexagonal prisms ∞ triangular prisms ∞ triangular pyramids 1 rhombitrihexagonal tiling |
Related uniform polychora | runcinated 5-cell | runcinated tesseract | runcinated 24-cell | runcinated 120-cell | runcinated hexagonal tiling honeycomb |
In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An.
Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation for an arbitrary complex number , which represents the order of the Bessel function. Although and produce the same differential equation, it is conventional to define different Bessel functions for these two values in such a way that the Bessel functions are mostly smooth functions of .
In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler. Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse.
In Euclidean geometry, a regular polygon is a polygon that is direct equiangular and equilateral. Regular polygons may be either convex, star or skew. In the limit, a sequence of regular polygons with an increasing number of sides approximates a circle, if the perimeter or area is fixed, or a regular apeirogon, if the edge length is fixed.
In mathematics, the inverse trigonometric functions are the inverse functions of the trigonometric functions, under suitably restricted domains. Specifically, they are the inverses of the sine, cosine, tangent, cotangent, secant, and cosecant functions, and are used to obtain an angle from any of the angle's trigonometric ratios. Inverse trigonometric functions are widely used in engineering, navigation, physics, and geometry.
In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.
In mathematics, the double factorial of a number n, denoted by n‼, is the product of all the positive integers up to n that have the same parity as n. That is,
The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function over the entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral is
In geometry, a disdyakis triacontahedron, hexakis icosahedron, decakis dodecahedron or kisrhombic triacontahedron is a Catalan solid with 120 faces and the dual to the Archimedean truncated icosidodecahedron. As such it is face-uniform but with irregular face polygons. It slightly resembles an inflated rhombic triacontahedron: if one replaces each face of the rhombic triacontahedron with a single vertex and four triangles in a regular fashion, one ends up with a disdyakis triacontahedron. That is, the disdyakis triacontahedron is the Kleetope of the rhombic triacontahedron. It is also the barycentric subdivision of the regular dodecahedron and icosahedron. It has the most faces among the Archimedean and Catalan solids, with the snub dodecahedron, with 92 faces, in second place.
In trigonometry, tangent half-angle formulas relate the tangent of half of an angle to trigonometric functions of the entire angle.
In probability theory, a distribution is said to be stable if a linear combination of two independent random variables with this distribution has the same distribution, up to location and scale parameters. A random variable is said to be stable if its distribution is stable. The stable distribution family is also sometimes referred to as the Lévy alpha-stable distribution, after Paul Lévy, the first mathematician to have studied it.
In geometry, the area enclosed by a circle of radius r is πr2. Here, the Greek letter π represents the constant ratio of the circumference of any circle to its diameter, approximately equal to 3.14159.
In geometry, the circumscribed circle or circumcircle of a triangle is a circle that passes through all three vertices. The center of this circle is called the circumcenter of the triangle, and its radius is called the circumradius. The circumcenter is the point of intersection between the three perpendicular bisectors of the triangle's sides, and is a triangle center.
In mathematics, the lemniscate elliptic functions are elliptic functions related to the arc length of the lemniscate of Bernoulli. They were first studied by Giulio Fagnano in 1718 and later by Leonhard Euler and Carl Friedrich Gauss, among others.
There are several equivalent ways for defining trigonometric functions, and the proofs of the trigonometric identities between them depend on the chosen definition. The oldest and most elementary definitions are based on the geometry of right triangles and the ratio between their sides. The proofs given in this article use these definitions, and thus apply to non-negative angles not greater than a right angle. For greater and negative angles, see Trigonometric functions.
In mathematics, the Struve functionsHα(x), are solutions y(x) of the non-homogeneous Bessel's differential equation:
Liu Hui's π algorithm was invented by Liu Hui, a mathematician of the state of Cao Wei. Before his time, the ratio of the circumference of a circle to its diameter was often taken experimentally as three in China, while Zhang Heng (78–139) rendered it as 3.1724 or as . Liu Hui was not satisfied with this value. He commented that it was too large and overshot the mark. Another mathematician Wang Fan (219–257) provided π ≈ 142/45 ≈ 3.156. All these empirical π values were accurate to two digits. Liu Hui was the first Chinese mathematician to provide a rigorous algorithm for calculation of π to any accuracy. Liu Hui's own calculation with a 96-gon provided an accuracy of five digits ie π ≈ 3.1416.
In probability theory, the arcsine distribution is the probability distribution whose cumulative distribution function involves the arcsine and the square root:
In mathematics, Jacobi polynomials are a class of classical orthogonal polynomials. They are orthogonal with respect to the weight on the interval . The Gegenbauer polynomials, and thus also the Legendre, Zernike and Chebyshev polynomials, are special cases of the Jacobi polynomials.