Cupola (geometry)

Last updated
Set of cupolae
Pentagonal cupola.png
Pentagonal example
Faces n triangles,
n squares,
1 n-gon,
1 2n-gon
Edges 5n
Vertices 3n
Schläfli symbol {n} || t{n}
Symmetry group Cnv, [1,n], (*nn), order 2n
Rotation group Cn, [1,n]+, (nn), order n
Dual polyhedron Semibisected trapezohedron
Properties convex, prismatoid

In geometry, a cupola is a solid formed by joining two polygons, one (the base) with twice as many edges as the other, by an alternating band of isosceles triangles and rectangles. If the triangles are equilateral and the rectangles are squares, while the base and its opposite face are regular polygons, the triangular, square, and pentagonal cupolae all count among the Johnson solids, and can be formed by taking sections of the cuboctahedron, rhombicuboctahedron, and rhombicosidodecahedron, respectively.

Contents

A cupola can be seen as a prism where one of the polygons has been collapsed in half by merging alternate vertices.

A cupola can be given an extended Schläfli symbol {n} || t{n}, representing a regular polygon {n} joined by a parallel of its truncation, t{n} or {2n}.

Cupolae are a subclass of the prismatoids.

Its dual contains a shape that is sort of a weld between half of an n-sided trapezohedron and a 2n-sided pyramid.

Examples

Family of convex cupolae
n2345678
Schläfli symbol {2} || t{2} {3} || t{3} {4} || t{4} {5} || t{5} {6} || t{6} {7} || t{7} {8} || t{8}
Cupola Triangular prism wedge.png
Digonal cupola
Triangular cupola.png
Triangular cupola
Square cupola.png
Square cupola
Pentagonal cupola.png
Pentagonal cupola
Hexagonal cupola flat.svg
Hexagonal cupola
(Flat)
Heptagonal cupola.svg
Heptagonal cupola
(Non-regular face)
Octagonal cupola.svg
Octagonal cupola
(Non-regular face)
Related
uniform
polyhedra
Rhombohedron
CDel node 1.pngCDel 2.pngCDel node.pngCDel 3.pngCDel node 1.png
Cuboctahedron
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
Rhombicuboctahedron
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
Rhombicosidodecahedron
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node 1.png
Rhombitrihexagonal tiling
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node 1.png
Rhombitriheptagonal tiling
CDel node 1.pngCDel 7.pngCDel node.pngCDel 3.pngCDel node 1.png
Rhombitrioctagonal tiling
CDel node 1.pngCDel 8.pngCDel node.pngCDel 3.pngCDel node 1.png
Plane "hexagonal cupolae" in the rhombitrihexagonal tiling Tile 3464.svg
Plane "hexagonal cupolae" in the rhombitrihexagonal tiling

The triangular, square, and pentagonal cupolae are the only non-trivial convex cupolae with regular faces: The "hexagonal cupola" is a plane figure, and the triangular prism might be considered a "cupola" of degree 2 (the cupola of a line segment and a square). However, cupolae of higher-degree polygons may be constructed with irregular triangular and rectangular faces.

Coordinates of the vertices

A tetracontagonal cupola has:
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
40 isosceles triangles;
40 rectangles;
A top regular tetracontagon;
and a bottom regular octacontagon (hidden). Cupola 40.png
A tetracontagonal cupola has:
  40 rectangles;
  A top regular tetracontagon;
and a bottom regular octacontagon (hidden).

The definition of the cupola does not require the base (or the side opposite the base, which can be called the top) to be a regular polygon, but it is convenient to consider the case where the cupola has its maximal symmetry, Cnv. In that case, the top is a regular n-gon, while the base is either a regular 2n-gon or a 2n-gon which has two different side lengths alternating and the same angles as a regular 2n-gon. It is convenient to fix the coordinate system so that the base lies in the xy-plane, with the top in a plane parallel to the xy-plane. The z-axis is the n-fold axis, and the mirror planes pass through the z-axis and bisect the sides of the base. They also either bisect the sides or the angles of the top polygon, or both. (If n is even, half of the mirror planes bisect the sides of the top polygon and half bisect the angles, while if n is odd, each mirror plane bisects one side and one angle of the top polygon.) The vertices of the base can be designated through while the vertices of the top polygon can be designated through With these conventions, the coordinates of the vertices can be written as:

for j = 1, 2, ..., n.

Since the polygons etc. are rectangles, this puts a constraint on the values of The distance is equal to

while the distance is equal to

These are to be equal, and if this common edge is denoted by s,

These values are to be inserted into the expressions for the coordinates of the vertices given earlier.

Star-cupolae

4578nd
Crossed square cupola.png
{4/3}
Crossed square cupola
(upside down)
Crossed pentagrammic cupola.png
{5/3}
Crossed pentagrammic cupola
(upside down)
Heptagrammic cupola.png
{7/3}
Heptagrammic cupola
Octagrammic cupola.png
{8/3}
Octagrammic cupola
3
Crossed heptagrammic cupola.png
{7/5}
Crossed heptagrammic cupola
(upside down)
Crossed octagrammic cupola.png
{8/5}
Crossed octagrammic cupola
5
357nd
Tetrahemihexahedron.png
{3/2}
Crossed triangular cuploid
(upside down)
Pentagrammic cuploid.png
{5/2}
Pentagrammic cuploid
Heptagrammic cuploid.png
{7/2}
Heptagrammic cuploid
2
Crossed pentagonal cuploid.png
{5/4}
Crossed pentagonal cuploid
(upside down)
Crossed heptagrammic cuploid.png
{7/4}
Crossed heptagrammic cuploid
4

Star cupolae exist for any top base {n/d} where 6/5 < n/d < 6 and d is odd. At these limits, the cupolae collapse into plane figures. Beyond these limits, the triangles and squares can no longer span the distance between the two base polygons (it can still be made with non-equilateral isosceles triangles and non-square rectangles). If d is even, the bottom base {2n/d} becomes degenerate; then we can form a cupoloid or semicupola by withdrawing this degenerate face and letting the triangles and squares connect to each other here (through single edges) rather than to the late bottom base (through its double edges). In particular, the tetrahemihexahedron may be seen as a {3/2}-cupoloid.

The cupolae are all orientable, while the cupoloids are all non-orientable. For a cupoloid, if n/d > 2, then the triangles and squares do not cover the entire (single) base, and a small membrane is placed in this base {n/d}-gon that simply covers empty space. Hence the {5/2}- and {7/2}-cupoloids pictured above have membranes (not filled in), while the {5/4}- and {7/4}-cupoloids pictured above do not.

The height h of an {n/d}-cupola or cupoloid is given by the formula: In particular, h = 0 at the limits n/d = 6 and n/d = 6/5, and h is maximized at n/d = 2 (in the digonal cupola: the triangular prism, where the triangles are upright). [1] [2]

In the images above, the star cupolae have been given a consistent colour scheme to aid identifying their faces: the base {n/d}-gon is red, the base {2n/d}-gon is yellow, the squares are blue, and the triangles are green. The cupoloids have the base {n/d}-gon red, the squares yellow, and the triangles blue, as the base {2n/d}-gon has been withdrawn.

Hypercupolae

The hypercupolae or polyhedral cupolae are a family of convex nonuniform polychora (here four-dimensional figures), analogous to the cupolas. Each one's bases are a Platonic solid and its expansion. [3]

Name Tetrahedral cupola Cubic cupola Octahedral cupola Dodecahedral cupola Hexagonal tiling cupola
Schläfli symbol {3,3} || rr{3,3} {4,3} || rr{4,3} {3,4} || rr{3,4} {5,3} || rr{5,3} {6,3} || rr{6,3}
Segmentochora
index [3]
K4.23K4.71K4.107K4.152
circumradius
Image 4D Tetrahedral Cupola-perspective-cuboctahedron-first.png 4D Cubic Cupola-perspective-cube-first.png 4D octahedral cupola-perspective-octahedron-first.png Dodecahedral cupola.png
Cap cells Uniform polyhedron-33-t0.png Uniform polyhedron-33-t02.svg Uniform polyhedron-43-t0.svg Uniform polyhedron-43-t02.png Uniform polyhedron-43-t2.png Uniform polyhedron-43-t02.png Uniform polyhedron-53-t0.png Uniform polyhedron-53-t02.png Uniform tiling 63-t0.svg Uniform tiling 63-t02.png
Vertices16323080
Edges428484210
Faces4224 triangles
18 squares
8032 triangles
48 squares
8240 triangles
42 squares
19480 triangles
90 squares
24 pentagons
Cells161 tetrahedron
4 triangular prisms
6 triangular prisms
4 triangular pyramids
1 cuboctahedron
28 1 cube
 6 square prisms
12 triangular prisms
 8 triangular pyramids
 1  rhombicuboctahedron
28 1 octahedron
 8 triangular prisms
12 triangular prisms
 6 square pyramids
 1  rhombicuboctahedron
64 1 dodecahedron
12 pentagonal prisms
30 triangular prisms
20 triangular pyramids
 1  rhombicosidodecahedron
1 hexagonal tiling
hexagonal prisms
triangular prisms
triangular pyramids
1 rhombitrihexagonal tiling
Related
uniform
polychora
runcinated 5-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
runcinated tesseract
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
runcinated 24-cell
CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png
runcinated 120-cell
CDel node 1.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png
runcinated hexagonal tiling honeycomb
CDel node 1.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.png

See also

References

  1. "cupolas". www.orchidpalms.com. Retrieved 21 April 2018.
  2. "semicupolas". www.orchidpalms.com. Retrieved 21 April 2018.
  3. 1 2 Convex Segmentochora Dr. Richard Klitzing, Symmetry: Culture and Science, Vol. 11, Nos. 1-4, 139-181, 2000