Trapezohedron

Last updated
Set of dual-uniform n-gonal trapezohedra
Pentagonal trapezohedron.svg
Example: dual-uniform pentagonal trapezohedron (n = 5)
Typedual-uniform in the sense of dual-semiregular polyhedron
Faces 2n congruent kites
Edges 4n
Vertices 2n + 2
Vertex configuration V3.3.3.n
Schläfli symbol { } ⨁ {n} [1]
Conway notation dAn
Coxeter diagram CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 2x.pngCDel n.pngCDel node.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel n.pngCDel node fh.png
Symmetry group Dnd, [2+,2n], (2*n), order 4n
Rotation group Dn, [2,n]+, (22n), order 2n
Dual polyhedron (convex) uniform n-gonal antiprism
Properties convex, face-transitive, regular vertices [2]

In geometry, an n-gonaltrapezohedron, n-trapezohedron, n-antidipyramid, n-antibipyramid, or n-deltohedron [3] , [4] is the dual polyhedron of an n-gonal antiprism. The 2n faces of an n-trapezohedron are congruent and symmetrically staggered; they are called twisted kites. With a higher symmetry, its 2n faces are kites (sometimes also called trapezoids, or deltoids). [5]

Contents

The "n-gonal" part of the name does not refer to faces here, but to two arrangements of each n vertices around an axis of n-fold symmetry. The dual n-gonal antiprism has two actual n-gon faces.

An n-gonal trapezohedron can be dissected into two equal n-gonal pyramids and an n-gonal antiprism.

Terminology

These figures, sometimes called deltohedra, [3] are not to be confused with deltahedra, [4] whose faces are equilateral triangles.

Twisted trigonal, tetragonal, and hexagonal trapezohedra (with six, eight, and twelve twisted congruent kite faces) exist as crystals; in crystallography (describing the crystal habits of minerals), they are just called trigonal, tetragonal, and hexagonal trapezohedra. They have no plane of symmetry, and no center of inversion symmetry; [6] , [7] but they have a center of symmetry: the intersection point of their symmetry axes. The trigonal trapezohedron has one 3-fold symmetry axis, perpendicular to three 2-fold symmetry axes. [6] The tetragonal trapezohedron has one 4-fold symmetry axis, perpendicular to four 2-fold symmetry axes of two kinds. The hexagonal trapezohedron has one 6-fold symmetry axis, perpendicular to six 2-fold symmetry axes of two kinds. [8]

Crystal arrangements of atoms can repeat in space with trigonal and hexagonal trapezohedron cells. [9]

Also in crystallography, the word trapezohedron is often used for the polyhedron with 24 congruent non-twisted kite faces properly known as a deltoidal icositetrahedron , [10] which has eighteen order-4 vertices and eight order-3 vertices. This is not to be confused with the dodecagonal trapezohedron, which also has 24 congruent kite faces, but two order-12 apices (i.e. poles) and two rings of twelve order-3 vertices each.

Still in crystallography, the deltoid dodecahedron [11] has 12 congruent non-twisted kite faces, six order-4 vertices and eight order-3 vertices (the rhombic dodecahedron is a special case). This is not to be confused with the hexagonal trapezohedron , which also has 12 congruent kite faces, [8] but two order-6 apices (i.e. poles) and two rings of six order-3 vertices each.

Forms

An n-trapezohedron is defined by a regular zig-zag skew 2n-gon base, two symmetric apices with no degree of freedom right above and right below the base, and quadrilateral faces connecting each pair of adjacent basal edges to one apex.

An n-trapezohedron has two apical vertices on its polar axis, and 2n basal vertices in two regular n-gonal rings. It has 2n congruent kite faces, and it is isohedral.

Family of n-gonal trapezohedra
Trapezohedron nameDigonal trapezohedron
(Tetrahedron)
Trigonal trapezohedron Tetragonal trapezohedron Pentagonal trapezohedron Hexagonal trapezohedron ... Apeirogonal trapezohedron
Polyhedron image Digonal trapezohedron.png TrigonalTrapezohedron.svg Tetragonal trapezohedron.png Pentagonal trapezohedron.svg Hexagonal trapezohedron.png ...
Spherical tiling image Spherical digonal antiprism.svg Spherical trigonal trapezohedron.svg Spherical tetragonal trapezohedron.svg Spherical pentagonal trapezohedron.svg Spherical hexagonal trapezohedron.svg Plane tiling image Apeirogonal trapezohedron.svg
Face configuration V2.3.3.3V3.3.3.3V4.3.3.3V5.3.3.3V6.3.3.3...V∞.3.3.3

Special cases

Symmetry

The symmetry group of an n-gonal trapezohedron is Dnd = Dnv, of order 4n, except in the case of n = 3: a cube has the larger symmetry group Od of order 48 = 4×(4×3), which has four versions of D3d as subgroups.

The rotation group of an n-trapezohedron is Dn, of order 2n, except in the case of n = 3: a cube has the larger rotation group O of order 24 = 4×(2×3), which has four versions of D3 as subgroups.

Note: Every n-trapezohedron with a regular zig-zag skew 2n-gon base and 2n congruent non-twisted kite faces has the same (dihedral) symmetry group as the dual-uniform n-trapezohedron, for n ≥ 4.

One degree of freedom within symmetry from Dnd (order 4n) to Dn (order 2n) changes the congruent kites into congruent quadrilaterals with three edge lengths, called twisted kites, and the n-trapezohedron is called a twisted trapezohedron. (In the limit, one edge of each quadrilateral goes to zero length, and the n-trapezohedron becomes an n-bipyramid.)

If the kites surrounding the two peaks are not twisted but are of two different shapes, the n-trapezohedron can only have Cnv (cyclic with vertical mirrors) symmetry, order 2n, and is called an unequal or asymmetric trapezohedron. Its dual is an unequal n-antiprism , with the top and bottom n-gons of different radii.

If the kites are twisted and are of two different shapes, the n-trapezohedron can only have Cn (cyclic) symmetry, order n, and is called an unequal twisted trapezohedron.

Example: variations with hexagonal trapezohedra (n = 6)
Trapezohedron typeTwisted trapezohedronUnequal trapezohedronUnequal twisted trapezohedron
Symmetry group D6, (662), [6,2]+C6v, (*66), [6]C6, (66), [6]+
Polyhedron image Twisted hexagonal trapezohedron.png Twisted hexagonal trapezohedron2.png Unequal hexagonal trapezohedron.png Unequal twisted hexagonal trapezohedron.png
Net Twisted hexagonal trapezohedron net.png Twisted hexagonal trapezohedron2 net.png Unequal hexagonal trapezohedron net.png Unequal twisted hexagonal trapezohedron net.png

Star trapezohedron

A star p/q-trapezohedron (where 2 ≤ q < 1p) is defined by a regular zig-zag skew star 2p/q-gon base, two symmetric apices with no degree of freedom right above and right below the base, and quadrilateral faces connecting each pair of adjacent basal edges to one apex.

A star p/q-trapezohedron has two apical vertices on its polar axis, and 2p basal vertices in two regular p-gonal rings. It has 2p congruent kite faces, and it is isohedral.

Such a star p/q-trapezohedron is a self-intersecting, crossed, or non-convex form. It exists for any regular zig-zag skew star 2p/q-gon base (where 2 ≤ q < 1p).

But if p/q < 3/2, then (pq)360°/p < q/2360°/p, so the dual star antiprism (of the star trapezohedron) cannot be uniform (i.e. cannot have equal edge lengths); and if p/q = 3/2, then (pq)360°/p = q/2360°/p, so the dual star antiprism must be flat, thus degenerate, to be uniform.

A dual-uniform star p/q-trapezohedron has Coxeter-Dynkin diagram CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel p.pngCDel rat.pngCDel q.pngCDel node fh.png.

Dual-uniform star p/q-trapezohedra up to p = 12
5/25/37/27/37/48/38/59/29/49/5
5-2 deltohedron.png 5-3 deltohedron.png 7-2 deltohedron.png 7-3 deltohedron.png 7-4 deltohedron.png 8-3 deltohedron.png 8-5 deltohedron.png 9-2 deltohedron.png 9-4 deltohedron.png 9-5 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 5.pngCDel rat.pngCDel 2x.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 5.pngCDel rat.pngCDel 3x.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 7.pngCDel rat.pngCDel 2x.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 7.pngCDel rat.pngCDel 3x.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 7.pngCDel rat.pngCDel 4.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 8.pngCDel rat.pngCDel 3x.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 8.pngCDel rat.pngCDel 5.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 9.pngCDel rat.pngCDel 2x.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 9.pngCDel rat.pngCDel 4.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 9.pngCDel rat.pngCDel 5.pngCDel node fh.png
10/311/211/311/411/511/611/712/512/7
10-3 deltohedron.png 11-2 deltohedron.png 11-3 deltohedron.png 11-4 deltohedron.png 11-5 deltohedron.png 11-6 deltohedron.png 11-7 deltohedron.png 12-5 deltohedron.png 12-7 deltohedron.png
CDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 10.pngCDel rat.pngCDel 3x.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 11.pngCDel rat.pngCDel 2x.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 11.pngCDel rat.pngCDel 3x.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 11.pngCDel rat.pngCDel 4.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 11.pngCDel rat.pngCDel 5.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 11.pngCDel rat.pngCDel 6.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 11.pngCDel rat.pngCDel 7.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 12.pngCDel rat.pngCDel 5.pngCDel node fh.pngCDel node fh.pngCDel 2x.pngCDel node fh.pngCDel 12.pngCDel rat.pngCDel 7.pngCDel node fh.png

See also

Related Research Articles

<span class="mw-page-title-main">Antiprism</span> Polyhedron with parallel bases connected by triangles

In geometry, an n-gonal antiprism or n-antiprism is a polyhedron composed of two parallel direct copies of an n-sided polygon, connected by an alternating band of 2n triangles. They are represented by the Conway notation An.

In geometry, a bipyramid, dipyramid, or double pyramid is a polyhedron formed by fusing two pyramids together base-to-base. The polygonal base of each pyramid must therefore be the same, and unless otherwise specified the base vertices are usually coplanar and a bipyramid is usually symmetric, meaning the two pyramids are mirror images across their common base plane. When each apex of the bipyramid is on a line perpendicular to the base and passing through its center, it is a right bipyramid; otherwise it is oblique. When the base is a regular polygon, the bipyramid is also called regular.

In geometry, a dodecahedron or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagons as faces, which is a Platonic solid. There are also three regular star dodecahedra, which are constructed as stellations of the convex form. All of these have icosahedral symmetry, order 120.

<span class="mw-page-title-main">Kite (geometry)</span> Quadrilateral symmetric across a diagonal

In Euclidean geometry, a kite is a quadrilateral with reflection symmetry across a diagonal. Because of this symmetry, a kite has two equal angles and two pairs of adjacent equal-length sides. Kites are also known as deltoids, but the word deltoid may also refer to a deltoid curve, an unrelated geometric object sometimes studied in connection with quadrilaterals. A kite may also be called a dart, particularly if it is not convex.

<span class="mw-page-title-main">Prism (geometry)</span> Solid with 2 parallel n-gonal bases connected by n parallelograms

In geometry, a prism is a polyhedron comprising an n-sided polygon base, a second base which is a translated copy of the first, and n other faces, necessarily all parallelograms, joining corresponding sides of the two bases. All cross-sections parallel to the bases are translations of the bases. Prisms are named after their bases, e.g. a prism with a pentagonal base is called a pentagonal prism. Prisms are a subclass of prismatoids.

<span class="mw-page-title-main">Rhombic dodecahedron</span> Catalan solid with 12 faces

In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron.

<span class="mw-page-title-main">Deltoidal hexecontahedron</span> Catalan polyhedron

In geometry, a deltoidal hexecontahedron is a Catalan solid which is the dual polyhedron of the rhombicosidodecahedron, an Archimedean solid. It is one of six Catalan solids to not have a Hamiltonian path among its vertices.

In geometry, the term semiregular polyhedron is used variously by different authors.

<span class="mw-page-title-main">Hexagonal bipyramid</span> Polyhedron; 2 hexagonal pyramids joined base-to-base

A hexagonal bipyramid is a polyhedron formed from two hexagonal pyramids joined at their bases. The resulting solid has 12 triangular faces, 8 vertices and 18 edges. The 12 faces are identical isosceles triangles.

<span class="mw-page-title-main">Duoprism</span> Cartesian product of two polytopes

In geometry of 4 dimensions or higher, a double prism or duoprism is a polytope resulting from the Cartesian product of two polytopes, each of two dimensions or higher. The Cartesian product of an n-polytope and an m-polytope is an (n+m)-polytope, where n and m are dimensions of 2 (polygon) or higher.

<span class="mw-page-title-main">Trigonal trapezohedron</span> Polyhedron with 6 congruent rhombus faces

In geometry, a trigonal trapezohedron is a polyhedron with six congruent quadrilateral faces, which may be scalene or rhomboid. The variety with rhombus-shaped faces faces is a rhombohedron. An alternative name for the same shape is the trigonal deltohedron.

<span class="mw-page-title-main">Tetragonal trapezohedron</span> Trapezohedron with eight faces

In geometry, a tetragonal trapezohedron, or deltohedron, is the second in an infinite series of trapezohedra, which are dual to the antiprisms. It has eight faces, which are congruent kites, and is dual to the square antiprism.

<span class="mw-page-title-main">Hexagonal trapezohedron</span> Polyhedron made of 12 congruent kites

In geometry, a hexagonal trapezohedron or deltohedron is the fourth in an infinite series of trapezohedra which are dual polyhedra to the antiprisms. It has twelve faces which are congruent kites. It can be described by the Conway notation dA6.

<span class="mw-page-title-main">Truncated trapezohedron</span> Polyhedron made by cutting off a trapezohedrons polar vertices

In geometry, an n-gonaltruncated trapezohedron is a polyhedron formed by a n-gonal trapezohedron with n-gonal pyramids truncated from its two polar axis vertices.

<span class="mw-page-title-main">Isohedral figure</span> ≥2-dimensional tessellation or ≥3-dimensional polytope with identical faces

In geometry, a tessellation of dimension 2 or higher, or a polytope of dimension 3 or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruent but must be transitive, i.e. must lie within the same symmetry orbit. In other words, for any two faces A and B, there must be a symmetry of the entire figure by translations, rotations, and/or reflections that maps A onto B. For this reason, convex isohedral polyhedra are the shapes that will make fair dice.

<span class="mw-page-title-main">Compound of two tetrahedra</span> Polyhedral compound

In geometry, a compound of two tetrahedra is constructed by two overlapping tetrahedra, usually implied as regular tetrahedra.

<span class="mw-page-title-main">Prismatic compound of antiprisms</span> Polyhedral compound

In geometry, a prismatic compound of antiprism is a category of uniform polyhedron compound. Each member of this infinite family of uniform polyhedron compounds is a symmetric arrangement of antiprisms sharing a common axis of rotational symmetry.

<span class="mw-page-title-main">Diminished trapezohedron</span> Polyhedron made by truncating one end of a trapezohedron

In geometry, a diminished trapezohedron is a polyhedron in an infinite set of polyhedra, constructed by removing one of the polar vertices of a trapezohedron and replacing it by a new face (diminishment). It has one regular n-gonal base face, n triangle faces around the base, and n kites meeting on top. The kites can also be replaced by rhombi with specific proportions.

<span class="mw-page-title-main">Chamfer (geometry)</span> Geometric operation which truncates the edges of polyhedra

In geometry, chamfering or edge-truncation is a topological operator that modifies one polyhedron into another. It is similar to expansion: it moves the faces apart (outward), and adds a new face between each two adjacent faces; but contrary to expansion, it maintains the original vertices. For a polyhedron, this operation adds a new hexagonal face in place of each original edge.

References

  1. N.W. Johnson: Geometries and Transformations, (2018) ISBN   978-1-107-10340-5 Chapter 11: Finite symmetry groups, 11.3 Pyramids, Prisms, and Antiprisms, Figure 11.3c
  2. "duality". maths.ac-noumea.nc. Retrieved 2020-10-19.
  3. 1 2 Weisstein, Eric W. "Trapezohedron". MathWorld. Retrieved 2024-04-24. Remarks: the faces of a deltohedron are deltoids; a (non-twisted) kite or deltoid can be dissected into two isosceles triangles or "deltas" (Δ), base-to-base.
  4. 1 2 Weisstein, Eric W. "Deltahedron". MathWorld. Retrieved 2024-04-28.
  5. Spencer 1911, p. 575, or p. 597 on Wikisource, CRYSTALLOGRAPHY, 1. CUBIC SYSTEM, TETRAHEDRAL CLASS, footnote: « [Deltoid]: From the Greek letter δ, Δ; in general, a triangular-shaped object; also an alternative name for a trapezoid ». Remark: a twisted kite can look like and even be a trapezoid.
  6. 1 2 Spencer 1911, p. 581, or p. 603 on Wikisource, CRYSTALLOGRAPHY, 6. HEXAGONAL SYSTEM, Rhombohedral Division, TRAPEZOHEDRAL CLASS, FIG. 74.
  7. Spencer 1911, p. 577, or p. 599 on Wikisource, CRYSTALLOGRAPHY, 2. TETRAGONAL SYSTEM, TRAPEZOHEDRAL CLASS.
  8. 1 2 Spencer 1911, p. 582, or p. 604 on Wikisource, CRYSTALLOGRAPHY, 6. HEXAGONAL SYSTEM, Hexagonal Division, TRAPEZOHEDRAL CLASS.
  9. Trigonal-trapezohedric Class, 3 2 and Hexagonal-trapezohedric Class, 6 2 2
  10. Spencer 1911, p. 574, or p. 596 on Wikisource, CRYSTALLOGRAPHY, 1. CUBIC SYSTEM, HOLOSYMMETRIC CLASS, FIG. 17.
  11. Spencer 1911, p. 575, or p. 597 on Wikisource, CRYSTALLOGRAPHY, 1. CUBIC SYSTEM, TETRAHEDRAL CLASS, FIG. 27.