Tetrahedral-octahedral honeycomb

Last updated
Alternated cubic honeycomb
Alternated cubic tiling.png   HC P1-P3.png
Type Uniform honeycomb
Family Alternated hypercubic honeycomb
Simplectic honeycomb
Indexing [1] J21,31,51, A2
W9, G1
Schläfli symbols h{4,3,4}
{3[4]}
ht0,3{4,3,4}
h{4,4}h{∞}
ht0,2{4,4}h{∞}
h{∞}h{∞}h{∞}
s{∞}s{∞}s{∞}
Coxeter diagrams CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.png
CDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.png
CDel node h.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node.png = CDel node h.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4.pngCDel node.png
CDel node h.pngCDel infin.pngCDel node h.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node h.pngCDel 2.pngCDel node h.pngCDel infin.pngCDel node h.png = CDel node h.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.pngCDel 4g.pngCDel node g.png
Cells {3,3} Uniform polyhedron-33-t0.png
{3,4} Uniform polyhedron-43-t2.png
Faces triangle {3}
Edge figure [{3,3}.{3,4}]2
(rectangle)
Vertex figure Alternated cubic honeycomb verf.svg Uniform t0 3333 honeycomb verf.png
Cuboctahedron.png Cantellated tetrahedron.png
(cuboctahedron)
Symmetry group Fm3m (225)
Coxeter group , [4,31,1]
Dual Dodecahedrille
rhombic dodecahedral honeycomb
Cell: Dodecahedrille cell.png
Properties vertex-transitive, edge-transitive, quasiregular honeycomb

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.

Contents

Other names include half cubic honeycomb, half cubic cellulation, or tetragonal disphenoidal cellulation. John Horton Conway calls this honeycomb a tetroctahedrille, and its dual a dodecahedrille.

R. Buckminster Fuller combines the two words octahedron and tetrahedron into octet truss, a rhombohedron consisting of one octahedron (or two square pyramids) and two opposite tetrahedra.

It is vertex-transitive with 8 tetrahedra and 6 octahedra around each vertex. It is edge-transitive with 2 tetrahedra and 2 octahedra alternating on each edge.

A geometric honeycomb is a space-filling of polyhedral or higher-dimensional cells, so that there are no gaps. It is an example of the more general mathematical tiling or tessellation in any number of dimensions.

Honeycombs are usually constructed in ordinary Euclidean ("flat") space, like the convex uniform honeycombs. They may also be constructed in non-Euclidean spaces, such as hyperbolic uniform honeycombs. Any finite uniform polytope can be projected to its circumsphere to form a uniform honeycomb in spherical space.

It is part of an infinite family of uniform honeycombs called alternated hypercubic honeycombs, formed as an alternation of a hypercubic honeycomb and being composed of demihypercube and cross-polytope facets. It is also part of another infinite family of uniform honeycombs called simplectic honeycombs.

In this case of 3-space, the cubic honeycomb is alternated, reducing the cubic cells to tetrahedra, and the deleted vertices create octahedral voids. As such it can be represented by an extended Schläfli symbol h{4,3,4} as containing half the vertices of the {4,3,4} cubic honeycomb.

There is a similar honeycomb called gyrated tetrahedral-octahedral honeycomb which has layers rotated 60 degrees so half the edges have neighboring rather than alternating tetrahedra and octahedra.

The tetrahedral-octahedral honeycomb can have its symmetry doubled by placing tetrahedra on the octahedral cells, creating a nonuniform honeycomb consisting of tetrahedra and octahedra (as triangular antiprisms). Its vertex figure is an order-3 truncated triakis tetrahedron. This honeycomb is the dual of the triakis truncated tetrahedral honeycomb, with triakis truncated tetrahedral cells.

Cartesian coordinates

For an alternated cubic honeycomb, with edges parallel to the axes and with an edge length of 1, the Cartesian coordinates of the vertices are: (For all integral values: i,j,k with i+j+k even)

(i, j, k)
This diagram shows an exploded view of the cells surrounding each vertex. TetraOctaHoneycomb-VertexConfig.svg
This diagram shows an exploded view of the cells surrounding each vertex.

Symmetry

There are two reflective constructions and many alternated cubic honeycomb ones; examples:

Symmetry, [4,31,1]
= ½, [1+,4,3,4]
, [3[4]]
= ½, [1+,4,31,1]
[[(4,3,4,2+)]][(4,3,4,2+)]
Space group Fm3m (225)F43m (216)I43m (217)P43m (215)
Image Tetrahedral-octahedral honeycomb.png Tetrahedral-octahedral honeycomb2.png
Types of tetrahedra1234
Coxeter
diagram
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png = CDel nodes.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node h1.png = CDel node h0.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.pngCDel branch.pngCDel 4a4b.pngCDel branch hh.pngCDel label2.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png

Alternated cubic honeycomb slices

The alternated cubic honeycomb can be sliced into sections, where new square faces are created from inside of the octahedron. Each slice will contain up and downward facing square pyramids and tetrahedra sitting on their edges. A second slice direction needs no new faces and includes alternating tetrahedral and octahedral. This slab honeycomb is a scaliform honeycomb rather than uniform because it has nonuniform cells.

CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Alternated cubic slab honeycomb.png Tetroctahedric semicheck.png

Projection by folding

The alternated cubic honeycomb can be orthogonally projected into the planar square tiling by a geometric folding operation that maps one pairs of mirrors into each other. The projection of the alternated cubic honeycomb creates two offset copies of the square tiling vertex arrangement of the plane:

Coxeter
group
Coxeter
diagram
CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.png
Image Tiling Dual Semiregular V4-8-8 Tetrakis Square.svg Uniform tiling 44-t0.svg
Namealternated cubic honeycomb square tiling

A3/D3 lattice

Its vertex arrangement represents an A3 lattice or D3 lattice. [2] [3] This lattice is known as the face-centered cubic lattice in crystallography and is also referred to as the cubic close packed lattice as its vertices are the centers of a close-packing with equal spheres that achieves the highest possible average density. The tetrahedral-octahedral honeycomb is the 3-dimensional case of a simplectic honeycomb. Its Voronoi cell is a rhombic dodecahedron, the dual of the cuboctahedron vertex figure for the tet-oct honeycomb.

The D+
3
packing can be constructed by the union of two D3 (or A3) lattices. The D+
n
packing is only a lattice for even dimensions. The kissing number is 22=4, (2n-1 for n<8, 240 for n=8, and 2n(n-1) for n>8). [4]

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node 1.png

The A*
3
or D*
3
lattice (also called A4
3
or D4
3
) can be constructed by the union of all four A3 lattices, and is identical to the vertex arrangement of the disphenoid tetrahedral honeycomb, dual honeycomb of the uniform bitruncated cubic honeycomb: [5] It is also the body centered cubic, the union of two cubic honeycombs in dual positions.

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes 10luru.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes 01lr.pngCDel split2.pngCDel node.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node 1.png = dual of CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node 1.png = CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png.

The kissing number of the D*
3
lattice is 8 [6] and its Voronoi tessellation is a bitruncated cubic honeycomb, CDel branch 11.pngCDel 4a4b.pngCDel nodes.png, containing all truncated octahedral Voronoi cells, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.png. [7]

C3 honeycombs

The [4,3,4], CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png, Coxeter group generates 15 permutations of uniform honeycombs, 9 with distinct geometry including the alternated cubic honeycomb. The expanded cubic honeycomb (also known as the runcinated tesseractic honeycomb) is geometrically identical to the cubic honeycomb.

C3 honeycombs
Space
group
Fibrifold Extended
symmetry
Extended
diagram
OrderHoneycombs
Pm3m
(221)
4:2[4,3,4]CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node c3.pngCDel 4.pngCDel node c4.png×1CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 1, CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 2, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 3, CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 4,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 5, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png 6
Fm3m
(225)
2:2[1+,4,3,4]
↔ [4,31,1]
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node c2.png
CDel nodes 10ru.pngCDel split2.pngCDel node c1.pngCDel 4.pngCDel node c2.png
HalfCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png 7, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png 11, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png 12, CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png 13
I43m
(217)
4o:2[[(4,3,4,2+)]]CDel branch.pngCDel 4a4b.pngCDel nodes hh.pngHalf × 2CDel branch.pngCDel 4a4b.pngCDel nodes hh.png (7),
Fd3m
(227)
2+:2[[1+,4,3,4,1+]]
↔ [[3[4]]]
CDel branch.pngCDel 4a4b.pngCDel nodes h1h1.png
CDel branch 11.pngCDel 3ab.pngCDel branch.png
Quarter × 2CDel branch.pngCDel 4a4b.pngCDel nodes h1h1.png 10,
Im3m
(229)
8o:2[[4,3,4]]CDel branch c2.pngCDel 4a4b.pngCDel nodeab c1.png×2

CDel branch.pngCDel 4a4b.pngCDel nodes 11.png (1), CDel branch 11.pngCDel 4a4b.pngCDel nodes.png 8, CDel branch 11.pngCDel 4a4b.pngCDel nodes 11.png 9

B3 honeycombs

The [4,31,1], CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png, Coxeter group generates 9 permutations of uniform honeycombs, 4 with distinct geometry including the alternated cubic honeycomb.

B3 honeycombs
Space
group
Fibrifold Extended
symmetry
Extended
diagram
OrderHoneycombs
Fm3m
(225)
2:2[4,31,1]
↔ [4,3,4,1+]
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel split1.pngCDel nodes 10lu.png
CDel node c1.pngCDel 4.pngCDel node c2.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
×1CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png 1, CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png 2, CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png 3, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png 4
Fm3m
(225)
2:2<[1+,4,31,1]>
↔ <[3[4]]>
CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodeab c1.png
CDel node 1.pngCDel split1.pngCDel nodeab c1.pngCDel split2.pngCDel node.png
×2CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png (1), CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.png (3)
Pm3m
(221)
4:2<[4,31,1]>CDel node c3.pngCDel 4.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png×2

CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes.png 5, CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png 6, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes.png 7, CDel node.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.png (6), CDel node 1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.png 9, CDel node.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png 10, CDel node 1.pngCDel 4.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png 11

A3 honeycombs

This honeycomb is one of five distinct uniform honeycombs [8] constructed by the Coxeter group. The symmetry can be multiplied by the symmetry of rings in the Coxeter–Dynkin diagrams:

A3 honeycombs
Space
group
Fibrifold Square
symmetry
Extended
symmetry
Extended
diagram
Extended
group
Honeycomb diagrams
F43m
(216)
1o:2a1 Scalene tetrahedron diagram.png [3[4]]CDel node.pngCDel split1.pngCDel nodes.pngCDel split2.pngCDel node.png(None)
Fm3m
(225)
2:2d2 Sphenoid diagram.png <[3[4]]>
↔ [4,31,1]
CDel node c3.pngCDel split1.pngCDel nodeab c1-2.pngCDel split2.pngCDel node c3.png
CDel node.pngCDel 4.pngCDel node c3.pngCDel split1.pngCDel nodeab c1-2.png
×21
CDel node.pngCDel split1.pngCDel nodes 10luru.pngCDel split2.pngCDel node.png  1 ,CDel node 1.pngCDel split1.pngCDel nodes 10luru.pngCDel split2.pngCDel node 1.png  2
Fd3m
(227)
2+:2g2 Half-turn tetrahedron diagram.png [[3[4]]]
or [2+[3[4]]]
CDel branch 11.pngCDel 3ab.pngCDel branch.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
×22CDel branch 11.pngCDel 3ab.pngCDel branch.png  3
Pm3m
(221)
4:2d4 Digonal disphenoid diagram.png <2[3[4]]>
↔ [4,3,4]
CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel split2.pngCDel node c1.png
CDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node.png
×41
CDel node.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node.png  4
I3
(204)
8−or8 Regular tetrahedron diagram.png [4[3[4]]]+
↔ [[4,3+,4]]
CDel branch c1.pngCDel 3ab.pngCDel branch c1.png
CDel branch c1.pngCDel 4a4b.pngCDel nodes.png
½×8
↔ ½×2
CDel branch hh.pngCDel 3ab.pngCDel branch hh.png  (*)
Im3m
(229)
8o:2[4[3[4]]]
↔ [[4,3,4]]
×8
×2
CDel branch 11.pngCDel 3ab.pngCDel branch 11.png  5

Quasiregular honeycombs

Quasiregular polychora and honeycombs: h{4,p,q}
SpaceFiniteAffineCompactParacompact
Schläfli
symbol
h{4,3,3} h{4,3,4} h{4,3,5} h{4,3,6} h{4,4,3} h{4,4,4}
Coxeter
diagram
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 5.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 5.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node.pngCDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 6.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 3.pngCDel node.pngCDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node.pngCDel nodes 10ru.pngCDel split2-44.pngCDel node.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1-43.pngCDel nodes.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1-53.pngCDel nodes.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1-63.pngCDel nodes.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel split1-43.pngCDel nodes.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel split1-44.pngCDel nodes.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h0.png
Image 16-cell nets.png Tetrahedral-octahedral honeycomb.png Alternated order 5 cubic honeycomb.png H3 444 FC boundary.png
Vertex
figure

r{p,3}
Uniform polyhedron-33-t1.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.svg
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-53-t1.svg
CDel node.pngCDel 5.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 63-t1.svg
CDel node.pngCDel 6.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform polyhedron-43-t1.svg
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.png
Uniform tiling 44-t1.svg
CDel node.pngCDel 4.pngCDel node 1.pngCDel 4.pngCDel node.png

Cantic cubic honeycomb

Cantic cubic honeycomb
Type Uniform honeycomb
Schläfli symbol h2{4,3,4}
Coxeter diagrams CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.png
Cells t{3,4} Uniform polyhedron-43-t12.png
r{4,3} Uniform polyhedron-43-t1.png
t{3,3} Uniform polyhedron-33-t01.png
Faces triangle {3}
square {4}
hexagon {6}
Vertex figure Truncated alternated cubic honeycomb verf.png
rectangular pyramid
Coxeter groups [4,31,1],
[3[4]],
Symmetry group Fm3m (225)
Dual half oblate octahedrille
Cell: Half oblate octahedrille cell.png
Properties vertex-transitive

The cantic cubic honeycomb, cantic cubic cellulation or truncated half cubic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of truncated octahedra, cuboctahedra and truncated tetrahedra in a ratio of 1:1:2. Its vertex figure is a rectangular pyramid.

John Horton Conway calls this honeycomb a truncated tetraoctahedrille, and its dual half oblate octahedrille.

Truncated alternated cubic tiling.png   HC A1-A3-A4.png

Symmetry

It has two different uniform constructions. The construction can be seen with alternately colored truncated tetrahedra.

Symmetry[4,31,1],
=<[3[4]]>
[3[4]],
Space group Fm3m (225)F43m (216)
Coloring Truncated Alternated Cubic Honeycomb.svg Truncated Alternated Cubic Honeycomb2.png
Coxeter CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel split2.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel split1.pngCDel nodes 11.png
Vertex figure Truncated alternated cubic honeycomb verf.png T012 quarter cubic honeycomb verf.png

It is related to the cantellated cubic honeycomb. Rhombicuboctahedra are reduced to truncated octahedra, and cubes are reduced to truncated tetrahedra.

Cantellated cubic honeycomb.png
cantellated cubic
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
Truncated Alternated Cubic Honeycomb.svg
Cantic cubic
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png, CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png, CDel node 1.pngCDel 2.pngCDel node 1.pngCDel 4.pngCDel node.png
rr{4,3}, r{4,3}, {4,3}
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.png, CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png, CDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
t{3,4}, r{4,3}, t{3,3}

Runcic cubic honeycomb

Runcic cubic honeycomb
Type Uniform honeycomb
Schläfli symbol h3{4,3,4}
Coxeter diagrams CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Cells rr{4,3} Uniform polyhedron-43-t02.png
{4,3} Uniform polyhedron-43-t0.png
{3,3} Uniform polyhedron-33-t0.png
Faces triangle {3}
square {4}
Vertex figure Runcinated alternated cubic honeycomb verf.png
triangular frustum
Coxeter group , [4,31,1]
Symmetry group Fm3m (225)
Dual quarter cubille
Cell: Quarter cubille cell.png
Properties vertex-transitive

The runcic cubic honeycomb or runcic cubic cellulation is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of rhombicuboctahedra, cubes, and tetrahedra in a ratio of 1:1:2. Its vertex figure is a triangular frustum, with a tetrahedron on one end, cube on the opposite end, and three rhombicuboctahedra around the trapezoidal sides.

John Horton Conway calls this honeycomb a 3-RCO-trille, and its dual quarter cubille.

Runcinated alternated cubic tiling.png HC A5-P2-P1.png

Quarter cubille

The dual of a runcic cubic honeycomb is called a quarter cubille, with Coxeter diagram CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node f1.png, with faces in 2 of 4 hyperplanes of the , [4,31,1] symmetry fundamental domain.

Cells can be seen as 1/4 of dissected cube, using 4 vertices and the center. Four cells exist around 6 edges, and 3 cells around 3 edges.

Quarter cubille cell.png

It is related to the runcinated cubic honeycomb, with quarter of the cubes alternated into tetrahedra, and half expanded into rhombicuboctahedra.

Runcinated cubic honeycomb.png
Runcinated cubic
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
Runcic cubic honeycomb.png
Runcic cubic
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png = CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 4.pngCDel node 1.png
{4,3}, {4,3}, {4,3}, {4,3}
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png, CDel node 1.pngCDel 4.pngCDel node.pngCDel 2.pngCDel node 1.png, CDel node 1.pngCDel 2.pngCDel node.pngCDel 4.pngCDel node 1.png, CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
h{4,3}, rr{4,3}, {4,3}
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png, CDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png, CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png

This honeycomb can be divided on truncated square tiling planes, using the octagons centers of the rhombicuboctahedra, creating square cupolae. This scaliform honeycomb is represented by Coxeter diagram CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node 1.png, and symbol s3{2,4,4}, with coxeter notation symmetry [2+,4,4].

Runcic snub 244 honeycomb.png .

Runcicantic cubic honeycomb

Runcicantic cubic honeycomb
Type Uniform honeycomb
Schläfli symbol h2,3{4,3,4}
Coxeter diagrams CDel nodes 10ru.pngCDel split2.pngCDel node 1.pngCDel 4.pngCDel node 1.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Cells tr{4,3} Uniform polyhedron-43-t012.png
t{4,3} Uniform polyhedron-43-t01.png
t{3,3} Uniform polyhedron-33-t01.png
Faces triangle {3}
square {4}
hexagon {6}
octagon {8}
Vertex figure Runcitruncated alternate cubic honeycomb verf.png
mirrored sphenoid
Coxeter group , [4,31,1]
Symmetry group Fm3m (225)
Dual half pyramidille
Cell: Half pyramidille cell.png
Properties vertex-transitive

The runcicantic cubic honeycomb or runcicantic cubic cellulation is a uniform space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of truncated cuboctahedra, truncated cubes and truncated tetrahedra in a ratio of 1:1:2, with a mirrored sphenoid vertex figure. It is related to the runcicantellated cubic honeycomb.

John Horton Conway calls this honeycomb a f-tCO-trille, and its dual half pyramidille.

Cantitruncated alternated cubic tiling.png HC A6-A2-A1.png

Half pyramidille

The dual to the runcitruncated cubic honeycomb is called a half pyramidille, with Coxeter diagram CDel node fh.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node f1.pngCDel 4.pngCDel node f1.png. Faces exist in 3 of 4 hyperplanes of the [4,31,1], Coxeter group.

Cells are irregular pyramids and can be seen as 1/12 of a cube, or 1/24 of a rhombic dodecahedron, each defined with three corner and the cube center.

Half pyramidille cell.png

A related uniform skew apeirohedron exists with the same vertex arrangement, but triangles and square removed. It can be seen as truncated tetrahedra and truncated cubes augmented together.

Runcicantic cubic honeycomb apeirohedron 6688.png
Cantitruncated alternated cubic honeycomb.png
Runcicantic cubic
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Runcitruncated cubic honeycomb.jpg
Runcicantellated cubic
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png

Gyrated tetrahedral-octahedral honeycomb

Gyrated tetrahedral-octahedral honeycomb
Type convex uniform honeycomb
Coxeter diagrams CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node.png
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node.png
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node.png
Schläfli symbols h{4,3,4}:g
h{6,3}h{∞}
s{3,6}h{∞}
s{3[3]}h{∞}
Cells {3,3} Uniform polyhedron-33-t0.png
{3,4} Uniform polyhedron-43-t2.png
Faces triangle {3}
Vertex figure Gyrated alternated cubic honeycomb verf.png
triangular orthobicupola G3.4.3.4
Space group P63/mmc (194)
[3,6,2+,]
Dual trapezo-rhombic dodecahedral honeycomb
Properties vertex-transitive

The gyrated tetrahedral-octahedral honeycomb or gyrated alternated cubic honeycomb is a space-filling tessellation (or honeycomb) in Euclidean 3-space made up of octahedra and tetrahedra in a ratio of 1:2.

It is vertex-uniform with 8 tetrahedra and 6 octahedra around each vertex.

It is not edge-uniform. All edges have 2 tetrahedra and 2 octahedra, but some are alternating, and some are paired.

Gyrated alternated cubic.png Gyrated alternated cubic honeycomb.png

It can be seen as reflective layers of this layer honeycomb:

CDel node h.pngCDel 2x.pngCDel node h.pngCDel 6.pngCDel node.pngCDel 3.pngCDel node.png
Tetroctahedric semicheck.png


Construction by gyration

This is a less symmetric version of another honeycomb, tetrahedral-octahedral honeycomb, in which each edge is surrounded by alternating tetrahedra and octahedra. Both can be considered as consisting of layers one cell thick, within which the two kinds of cell strictly alternate. Because the faces on the planes separating these layers form a regular pattern of triangles, adjacent layers can be placed so that each octahedron in one layer meets a tetrahedron in the next layer, or so that each cell meets a cell of its own kind (the layer boundary thus becomes a reflection plane). The latter form is called gyrated.

The vertex figure is called a triangular orthobicupola, compared to the tetrahedral-octahedral honeycomb whose vertex figure cuboctahedron in a lower symmetry is called a triangular gyrobicupola, so the gyro- prefix is reversed in usage.

Vertex figures
HoneycombGyrated tet-octReflective tet-oct
Image Triangular orthobicupola.png Cuboctahedron.jpg
Nametriangular orthobicupolatriangular gyrobicupola
Vertex figure Gyrated alternated cubic honeycomb verf.png Uniform t0 3333 honeycomb verf.png
Symmetry D3h, order 12
D3d, order 12
(Oh, order 48)

Construction by alternation

Vertex figure with nonplanar 3.3.3.3 vertex configuration for the triangular bipyramids Ditetrahedral-octahedral honeycomb verf.png
Vertex figure with nonplanar 3.3.3.3 vertex configuration for the triangular bipyramids

The geometry can also be constructed with an alternation operation applied to a hexagonal prismatic honeycomb. The hexagonal prism cells become octahedra and the voids create triangular bipyramids which can be divided into pairs of tetrahedra of this honeycomb. This honeycomb with bipyramids is called a ditetrahedral-octahedral honeycomb. There are 3 Coxeter-Dynkin diagrams, which can be seen as 1, 2, or 3 colors of octahedra:

  1. CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node.png
  2. CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node.png
  3. CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node.png

Gyroelongated alternated cubic honeycomb

Gyroelongated alternated cubic honeycomb
Type Uniform honeycomb
Schläfli symbol h{4,3,4}:ge
{3,6}h1{}
Coxeter diagram CDel node.pngCDel 3.pngCDel node.pngCDel 6.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node 1.png
CDel node.pngCDel 6.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node 1.png
CDel branch hh.pngCDel split2.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel infin.pngCDel node 1.png
Cells {3,3} Uniform polyhedron-33-t0.png
{3,4} Uniform polyhedron-43-t2.png
(3.4.4) Triangular prism.png
Faces triangle {3}
square {4}
Vertex figure Gyroelongated alternated cubic honeycomb verf.png
Space group P63/mmc (194)
[3,6,2+,]
Propertiesvertex-transitive

The gyroelongated alternated cubic honeycomb or elongated triangular antiprismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of octahedra, triangular prisms, and tetrahedra in a ratio of 1:2:2.

It is vertex-transitive with 3 octahedra, 4 tetrahedra, 6 triangular prisms around each vertex.

It is one of 28 convex uniform honeycombs.

The elongated alternated cubic honeycomb has the same arrangement of cells at each vertex, but the overall arrangement differs. In the elongated form, each prism meets a tetrahedron at one of its triangular faces and an octahedron at the other; in the gyroelongated form, the prism meets the same kind of deltahedron at each end.

Gyroelongated alternated cubic tiling.png Gyroelongated alternated cubic honeycomb.png

Elongated alternated cubic honeycomb

Elongated alternated cubic honeycomb
Type Uniform honeycomb
Schläfli symbol h{4,3,4}:e
{3,6}g1{}
Cells {3,3} Uniform polyhedron-33-t0.png
{3,4} Uniform polyhedron-43-t2.png
(3.4.4) Triangular prism.png
Faces triangle {3}
square {4}
Vertex figure Gyroelongated alternated cubic honeycomb verf.png
triangular cupola joined to isosceles hexagonal pyramid
Symmetry group [6,(3,2+,∞,2+)] ?
Propertiesvertex-transitive

The elongated alternated cubic honeycomb or elongated triangular gyroprismatic cellulation is a space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of octahedra, triangular prisms, and tetrahedra in a ratio of 1:2:2.

It is vertex-transitive with 3 octahedra, 4 tetrahedra, 6 triangular prisms around each vertex. Each prism meets an octahedron at one end and a tetrahedron at the other.

It is one of 28 convex uniform honeycombs.

It has a gyrated form called the gyroelongated alternated cubic honeycomb with the same arrangement of cells at each vertex.

Elongated alternated cubic tiling.png Elongated alternated cubic honeycomb.png

See also

Notes

  1. For cross-referencing, they are given with list indices from Andreini (1-22), Williams(1-2,9-19), Johnson (11-19, 21-25, 31-34, 41-49, 51-52, 61-65), and Grünbaum(1-28).
  2. "The Lattice D3".
  3. "The Lattice A3".
  4. Conway (1998), p. 119
  5. "The Lattice D3".
  6. Conway (1998), p. 120
  7. Conway (1998), p. 466
  8. , OEIS sequenceA000029 6-1 cases, skipping one with zero marks

Related Research Articles

<span class="mw-page-title-main">Convex uniform honeycomb</span> Spatial tiling of convex uniform polyhedra

In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells.

<span class="mw-page-title-main">Cuboctahedron</span> Polyhedron with 8 triangular faces and 6 square faces

A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it is a quasiregular polyhedron, i.e. an Archimedean solid that is not only vertex-transitive but also edge-transitive. It is radially equilateral.

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Runcinated 5-cell</span>

In four-dimensional geometry, a runcinated 5-cell is a convex uniform 4-polytope, being a runcination of the regular 5-cell.

<span class="mw-page-title-main">Cubic honeycomb</span> Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

<span class="mw-page-title-main">Bitruncated cubic honeycomb</span>

The bitruncated cubic honeycomb is a space-filling tessellation in Euclidean 3-space made up of truncated octahedra. It has 4 truncated octahedra around each vertex. Being composed entirely of truncated octahedra, it is cell-transitive. It is also edge-transitive, with 2 hexagons and one square on each edge, and vertex-transitive. It is one of 28 uniform honeycombs.

<span class="mw-page-title-main">Order-4 dodecahedral honeycomb</span> Regular tiling of hyperbolic 3-space

In hyperbolic geometry, the order-4 dodecahedral honeycomb is one of four compact regular space-filling tessellations of hyperbolic 3-space. With Schläfli symbol {5,3,4}, it has four dodecahedra around each edge, and 8 dodecahedra around each vertex in an octahedral arrangement. Its vertices are constructed from 3 orthogonal axes. Its dual is the order-5 cubic honeycomb.

<span class="mw-page-title-main">Quarter cubic honeycomb</span>

The quarter cubic honeycomb, quarter cubic cellulation or bitruncated alternated cubic honeycomb is a space-filling tessellation in Euclidean 3-space. It is composed of tetrahedra and truncated tetrahedra in a ratio of 1:1. It is called "quarter-cubic" because its symmetry unit – the minimal block from which the pattern is developed by reflections – is four times that of the cubic honeycomb.

<span class="mw-page-title-main">Tetragonal disphenoid honeycomb</span>

The tetragonal disphenoid tetrahedral honeycomb is a space-filling tessellation in Euclidean 3-space made up of identical tetragonal disphenoidal cells. Cells are face-transitive with 4 identical isosceles triangle faces. John Horton Conway calls it an oblate tetrahedrille or shortened to obtetrahedrille.

<span class="mw-page-title-main">Order-5 cubic honeycomb</span> Regular tiling of hyperbolic 3-space

In hyperbolic geometry, the order-5 cubic honeycomb is one of four compact regular space-filling tessellations in hyperbolic 3-space. With Schläfli symbol {4,3,5}, it has five cubes {4,3} around each edge, and 20 cubes around each vertex. It is dual with the order-4 dodecahedral honeycomb.

In geometry, a truncated tesseract is a uniform 4-polytope formed as the truncation of the regular tesseract.

<span class="mw-page-title-main">Triangular prismatic honeycomb</span>

The triangular prismatic honeycomb or triangular prismatic cellulation is a space-filling tessellation in Euclidean 3-space. It is composed entirely of triangular prisms.

<span class="mw-page-title-main">Uniform honeycombs in hyperbolic space</span> Tiling of hyperbolic 3-space by uniform polyhedra

In hyperbolic geometry, a uniform honeycomb in hyperbolic space is a uniform tessellation of uniform polyhedral cells. In 3-dimensional hyperbolic space there are nine Coxeter group families of compact convex uniform honeycombs, generated as Wythoff constructions, and represented by permutations of rings of the Coxeter diagrams for each family.

In four-dimensional Euclidean geometry, the 4-simplex honeycomb, 5-cell honeycomb or pentachoric-dispentachoric honeycomb is a space-filling tessellation honeycomb. It is composed of 5-cells and rectified 5-cells facets in a ratio of 1:1.

<span class="mw-page-title-main">Order-6 tetrahedral honeycomb</span>

In hyperbolic 3-space, the order-6 tetrahedral honeycomb is a paracompact regular space-filling tessellation. It is paracompact because it has vertex figures composed of an infinite number of faces, and has all vertices as ideal points at infinity. With Schläfli symbol {3,3,6}, the order-6 tetrahedral honeycomb has six ideal tetrahedra around each edge. All vertices are ideal, with infinitely many tetrahedra existing around each vertex in a triangular tiling vertex figure.

<span class="mw-page-title-main">Order-4 hexagonal tiling honeycomb</span>

In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an infinite number of faces. Each cell is a hexagonal tiling whose vertices lie on a horosphere: a flat plane in hyperbolic space that approaches a single ideal point at infinity.

<span class="mw-page-title-main">Order-6 cubic honeycomb</span>

The order-6 cubic honeycomb is a paracompact regular space-filling tessellation in hyperbolic 3-space. It is paracompact because it has vertex figures composed of an infinite number of facets, with all vertices as ideal points at infinity. With Schläfli symbol {4,3,6}, the honeycomb has six ideal cubes meeting along each edge. Its vertex figure is an infinite triangular tiling. Its dual is the order-4 hexagonal tiling honeycomb.

<span class="mw-page-title-main">Square tiling honeycomb</span>

In the geometry of hyperbolic 3-space, the square tiling honeycomb is one of 11 paracompact regular honeycombs. It is called paracompact because it has infinite cells, whose vertices exist on horospheres and converge to a single ideal point at infinity. Given by Schläfli symbol {4,4,3}, it has three square tilings, {4,4}, around each edge, and six square tilings around each vertex, in a cubic {4,3} vertex figure.

References

Space Family / /
E2 Uniform tiling {3[3]} δ3 hδ3 qδ3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 hδ4 qδ4
E4 Uniform 4-honeycomb {3[5]} δ5 hδ5 qδ5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 hδ6 qδ6
E6 Uniform 6-honeycomb {3[7]} δ7 hδ7 qδ7 222
E7 Uniform 7-honeycomb {3[8]} δ8 hδ8 qδ8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 hδ9 qδ9 152251521
E9 Uniform 9-honeycomb {3[10]}δ10hδ10qδ10
E10Uniform 10-honeycomb{3[11]}δ11hδ11qδ11
En-1Uniform (n-1)-honeycomb {3[n]} δn hδn qδn 1k22k1k21