6-demicubic honeycomb | |
---|---|
(No image) | |
Type | Uniform 6-honeycomb |
Family | Alternated hypercube honeycomb |
Schläfli symbol | h{4,3,3,3,3,4} h{4,3,3,3,31,1} ht0,6{4,3,3,3,3,4} |
Coxeter diagram | = = |
Facets | {3,3,3,3,4} h{4,3,3,3,3} |
Vertex figure | r{3,3,3,3,4} |
Coxeter group | [4,3,3,3,31,1] [31,1,3,3,31,1] |
The 6-demicubic honeycomb or demihexeractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 6-space. It is constructed as an alternation of the regular 6-cube honeycomb.
It is composed of two different types of facets. The 6-cubes become alternated into 6-demicubes h{4,3,3,3,3} and the alternated vertices create 6-orthoplex {3,3,3,3,4} facets.
The vertex arrangement of the 6-demicubic honeycomb is the D6 lattice. [1] The 60 vertices of the rectified 6-orthoplex vertex figure of the 6-demicubic honeycomb reflect the kissing number 60 of this lattice. [2] The best known is 72, from the E6 lattice and the 222 honeycomb.
The D+
6 lattice (also called D2
6) can be constructed by the union of two D6 lattices. This packing is only a lattice for even dimensions. The kissing number is 25=32 (2n-1 for n<8, 240 for n=8, and 2n(n-1) for n>8). [3]
The D*
6 lattice (also called D4
6 and C2
6) can be constructed by the union of all four 6-demicubic lattices: [4] It is also the 6-dimensional body centered cubic, the union of two 6-cube honeycombs in dual positions.
The kissing number of the D6* lattice is 12 (2n for n≥5). [5] and its Voronoi tessellation is a trirectified 6-cubic honeycomb, , containing all birectified 6-orthoplex Voronoi cell, . [6]
There are three uniform construction symmetries of this tessellation. Each symmetry can be represented by arrangements of different colors on the 64 6-demicube facets around each vertex.
Coxeter group | Schläfli symbol | Coxeter-Dynkin diagram | Vertex figure Symmetry | Facets/verf |
---|---|---|---|---|
= [31,1,3,3,3,4] = [1+,4,3,3,3,3,4] | h{4,3,3,3,3,4} | = | [3,3,3,4] | 64: 6-demicube 12: 6-orthoplex |
= [31,1,3,31,1] = [1+,4,3,3,31,1] | h{4,3,3,3,31,1} | = | [33,1,1] | 32+32: 6-demicube 12: 6-orthoplex |
½ = [[(4,3,3,3,4,2+)]] | ht0,6{4,3,3,3,3,4} | 32+16+16: 6-demicube 12: 6-orthoplex |
This honeycomb is one of 41 uniform honeycombs constructed by the Coxeter group, all but 6 repeated in other families by extended symmetry, seen in the graph symmetry of rings in the Coxeter–Dynkin diagrams. The 41 permutations are listed with its highest extended symmetry, and related and constructions:
D6 honeycombs | |||
---|---|---|---|
Extended symmetry | Extended diagram | Order | Honeycombs |
[31,1,3,3,31,1] | ×1 | , | |
[[31,1,3,3,31,1]] | ×2 | , , , | |
<[31,1,3,3,31,1]> ↔ [31,1,3,3,3,4] | ↔ | ×2 | , , , , , , , , , , , , , , , |
<2[31,1,3,3,31,1]> ↔ [4,3,3,3,3,4] | ↔ | ×4 | ,, ,, , , , , , , , |
[<2[31,1,3,3,31,1]>] ↔ [[4,3,3,3,3,4]] | ↔ | ×8 | , , , , , , |
Space | Family | / / | ||||
---|---|---|---|---|---|---|
E2 | Uniform tiling | {3[3]} | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | {3[4]} | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | {3[5]} | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | {3[6]} | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | {3[7]} | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | {3[8]} | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | {3[9]} | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | {3[10]} | δ10 | hδ10 | qδ10 | |
E10 | Uniform 10-honeycomb | {3[11]} | δ11 | hδ11 | qδ11 | |
En-1 | Uniform (n-1)-honeycomb | {3[n]} | δn | hδn | qδn | 1k2 • 2k1 • k21 |
In geometry, a convex uniform honeycomb is a uniform tessellation which fills three-dimensional Euclidean space with non-overlapping convex uniform polyhedral cells.
The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.
In four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {4,3,3,4}, and constructed by a 4-dimensional packing of tesseract facets.
In four-dimensional Euclidean geometry, the 16-cell honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {3,3,4,3}, and constructed by a 4-dimensional packing of 16-cell facets, three around every face.
In geometry, the 5-cubic honeycomb or penteractic honeycomb is the only regular space-filling tessellation in Euclidean 5-space. Four 5-cubes meet at each cubic cell, and it is more explicitly called an order-4 penteractic honeycomb.
The 5-demicube honeycomb is a uniform space-filling tessellation in Euclidean 5-space. It is constructed as an alternation of the regular 5-cube honeycomb.
The 6-cubic honeycomb or hexeractic honeycomb is the only regular space-filling tessellation in Euclidean 6-space.
The 7-demicubic honeycomb, or demihepteractic honeycomb is a uniform space-filling tessellation in Euclidean 7-space. It is constructed as an alternation of the regular 7-cubic honeycomb.
The 7-cubic honeycomb or hepteractic honeycomb is the only regular space-filling tessellation in Euclidean 7-space.
The 8-cubic honeycomb or octeractic honeycomb is the only regular space-filling tessellation in Euclidean 8-space.
The 8-demicubic honeycomb, or demiocteractic honeycomb is a uniform space-filling tessellation in Euclidean 8-space. It is constructed as an alternation of the regular 8-cubic honeycomb.
In geometry, the 222 honeycomb is a uniform tessellation of the six-dimensional Euclidean space. It can be represented by the Schläfli symbol {3,3,32,2}. It is constructed from 221 facets and has a 122 vertex figure, with 54 221 polytopes around every vertex.
In 7-dimensional geometry, the 331 honeycomb is a uniform honeycomb, also given by Schläfli symbol {3,3,3,33,1} and is composed of 321 and 7-simplex facets, with 56 and 576 of them respectively around each vertex.
In geometry, the 521 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. The symbol 521 is from Coxeter, named for the length of the 3 branches of its Coxeter-Dynkin diagram.
In five-dimensional Euclidean geometry, the 5-simplex honeycomb or hexateric honeycomb is a space-filling tessellation. Each vertex is shared by 12 5-simplexes, 30 rectified 5-simplexes, and 20 birectified 5-simplexes. These facet types occur in proportions of 2:2:1 respectively in the whole honeycomb.
In five-dimensional Euclidean geometry, the omnitruncated 5-simplex honeycomb or omnitruncated hexateric honeycomb is a space-filling tessellation. It is composed entirely of omnitruncated 5-simplex facets.
In six-dimensional Euclidean geometry, the 6-simplex honeycomb is a space-filling tessellation. The tessellation fills space by 6-simplex, rectified 6-simplex, and birectified 6-simplex facets. These facet types occur in proportions of 1:1:1 respectively in the whole honeycomb.
In seven-dimensional Euclidean geometry, the 7-simplex honeycomb is a space-filling tessellation. The tessellation fills space by 7-simplex, rectified 7-simplex, birectified 7-simplex, and trirectified 7-simplex facets. These facet types occur in proportions of 2:2:2:1 respectively in the whole honeycomb.
In seven-dimensional Euclidean geometry, the quarter 7-cubic honeycomb is a uniform space-filling tessellation. It has half the vertices of the 7-demicubic honeycomb, and a quarter of the vertices of a 7-cube honeycomb. Its facets are 7-demicubes, pentellated 7-demicubes, and {31,1,1}×{3,3} duoprisms.
In six-dimensional Euclidean geometry, the quarter 6-cubic honeycomb is a uniform space-filling tessellation. It has half the vertices of the 6-demicubic honeycomb, and a quarter of the vertices of a 6-cube honeycomb. Its facets are 6-demicubes, stericated 6-demicubes, and {3,3}×{3,3} duoprisms.