Rectified tesseractic honeycomb

Last updated
quarter cubic honeycomb
(No image)
Type Uniform 4-honeycomb
Family Quarter hypercubic honeycomb
Schläfli symbol r{4,3,3,4}
r{4,31,1}
r{4,31,1}
q{4,3,3,4}
Coxeter-Dynkin diagram
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
=
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png

CDel nodes 11.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
=
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

CDel nodes 11.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png
=
CDel node h0.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h0.png

CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
=
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
4-face type h{4,32}, Schlegel wireframe 16-cell.png
h3{4,32}, Schlegel half-solid rectified 8-cell.png
Cell type {3,3}, Tetrahedron.png
t1{4,3}, Cuboctahedron.png
Face type {3}
{4}
Edge figure Square pyramid.png
Square pyramid
Vertex figure Rectified tesseractic honeycomb verf.png
Elongated {3,4}×{}
Coxeter group = [4,3,3,4]
= [4,31,1]
= [31,1,1,1]
Dual
Properties vertex-transitive

In four-dimensional Euclidean geometry, the rectified tesseractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space. It is constructed by a rectification of a tesseractic honeycomb which creates new vertices on the middle of all the original edges, rectifying the cells into rectified tesseracts, and adding new 16-cell facets at the original vertices. Its vertex figure is an octahedral prism, {3,4}×{}.

Contents

It is also called a quarter tesseractic honeycomb since it has half the vertices of the 4-demicubic honeycomb, and a quarter of the vertices of a tesseractic honeycomb. [1]

The [4,3,3,4],

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

, Coxeter group generates 31 permutations of uniform tessellations, 21 with distinct symmetry and 20 with distinct geometry. The expanded tesseractic honeycomb (also known as the stericated tesseractic honeycomb) is geometrically identical to the tesseractic honeycomb. Three of the symmetric honeycombs are shared in the [3,4,3,3] family. Two alternations (13) and (17), and the quarter tesseractic (2) are repeated in other families.

C4 honeycombs
Extended
symmetry
Extended
diagram
OrderHoneycombs
[4,3,3,4]:
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
×1
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
1 ,
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
2 ,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
3 ,
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
4 ,
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
5 ,
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
6 ,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
7 ,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
8 ,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
9 ,
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
10 ,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
11 ,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
12 ,
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
13
[[4,3,3,4]]
CDel node c3.pngCDel split1.pngCDel nodeab c2.pngCDel 4a4b.pngCDel nodeab c1.png
×2
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
(1) ,
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
(2) ,
CDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h.png
(13) ,
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node 1.png
18
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
(6) ,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
19 ,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
20
[(3,3)[1+,4,3,3,4,1+]]
↔ [(3,3)[31,1,1,1]]
↔ [3,4,3,3]
CDel node c2.pngCDel split1.pngCDel nodeab c1.pngCDel 4a4b.pngCDel nodes.png

CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png

CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
×6
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png
14 ,
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
15 ,
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
16 ,
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel 4.pngCDel node.png
17

The [4,3,31,1],

CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png

, Coxeter group generates 31 permutations of uniform tessellations, 23 with distinct symmetry and 4 with distinct geometry. There are two alternated forms: the alternations (19) and (24) have the same geometry as the 16-cell honeycomb and snub 24-cell honeycomb respectively.

B4 honeycombs
Extended
symmetry
Extended
diagram
OrderHoneycombs
[4,3,31,1]:
CDel node c5.pngCDel 4.pngCDel node c4.pngCDel 3.pngCDel node c3.pngCDel split1.pngCDel nodeab c1-2.png
×1
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
5 ,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
6 ,
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png
7 ,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png
8
<[4,3,31,1]>:
↔[4,3,3,4]
CDel node c5.pngCDel 4.pngCDel node c4.pngCDel 3.pngCDel node c3.pngCDel split1.pngCDel nodeab c1.png

CDel node c5.pngCDel 4.pngCDel node c4.pngCDel 3.pngCDel node c3.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.png
×2
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
9 ,
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
10 ,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
11 ,
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
12 ,
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
13 ,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
14 ,
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png
(10) ,
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png
15 ,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png
16 ,
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png
(13) ,
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png
17 ,
CDel node 1.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png
18 ,
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png
19
[3[1+,4,3,31,1]]
↔ [3[3,31,1,1]]
↔ [3,3,4,3]
CDel node c3.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.pngCDel 4a.pngCDel nodea.png

CDel node c3.pngCDel 3.pngCDel node c2.pngCDel splitsplit1.pngCDel branch3 c1.pngCDel node c1.png

CDel node c3.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
×3
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
1 ,
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png
2 ,
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
3 ,
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png
4
[(3,3)[1+,4,3,31,1]]
↔ [(3,3)[31,1,1,1]]
↔ [3,4,3,3]
CDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png

CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png

CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
×12
CDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.png
20 ,
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 11.png
21 ,
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png
22 ,
CDel node.pngCDel 4.pngCDel node h.pngCDel 3.pngCDel node h.pngCDel split1.pngCDel nodes hh.png
23

There are ten uniform honeycombs constructed by the Coxeter group, all repeated in other families by extended symmetry, seen in the graph symmetry of rings in the Coxeter–Dynkin diagrams. The 10th is constructed as an alternation. As subgroups in Coxeter notation: [3,4,(3,3)*] (index 24), [3,3,4,3*] (index 6), [1+,4,3,3,4,1+] (index 4), [31,1,3,4,1+] (index 2) are all isomorphic to [31,1,1,1].

The ten permutations are listed with its highest extended symmetry relation:

D4 honeycombs
Extended
symmetry
Extended
diagram
Extended
group
Honeycombs
[31,1,1,1]
CDel nodes.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png
(none)
<[31,1,1,1]>
↔ [31,1,3,4]
CDel nodeab c1-2.pngCDel split2.pngCDel node c3.pngCDel split1.pngCDel nodeab c4.png

CDel nodeab c1-2.pngCDel split2.pngCDel node c3.pngCDel 3.pngCDel node c4.pngCDel 4.pngCDel node.png
×2 = (none)
<2[1,131,1]>
↔ [4,3,3,4]
CDel nodeab c1.pngCDel split2.pngCDel node c3.pngCDel split1.pngCDel nodeab c2.png

CDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c3.pngCDel 3.pngCDel node c2.pngCDel 4.pngCDel node.png
×4 =
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes.png
1,
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel split1.pngCDel nodes.png
2
[3[3,31,1,1]]
↔ [3,3,4,3]
CDel node c3.pngCDel 3.pngCDel node c2.pngCDel splitsplit1.pngCDel branch3 c1.pngCDel node c1.png

CDel node c3.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
×6 =
CDel node 1.pngCDel 3.pngCDel node.pngCDel splitsplit1.pngCDel branch3.pngCDel node.png
3,
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel splitsplit1.pngCDel branch3.pngCDel node.png
4,
CDel node.pngCDel 3.pngCDel node.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png
5,
CDel node.pngCDel 3.pngCDel node 1.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png
6
[4[1,131,1]]
↔ [[4,3,3,4]]
CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png

CDel node.pngCDel 4.pngCDel node c1.pngCDel 3.pngCDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.png
×8 = ×2
CDel nodes.pngCDel split2.pngCDel node 1.pngCDel split1.pngCDel nodes.png
7,
CDel nodes 11.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes 11.png
8,
CDel nodes 11.pngCDel split2.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png
9
[(3,3)[31,1,1,1]]
↔ [3,4,3,3]
CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png

CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
×24 =
[(3,3)[31,1,1,1]]+
↔ [3+,4,3,3]
CDel nodeab c1.pngCDel split2.pngCDel node c2.pngCDel split1.pngCDel nodeab c1.png

CDel node c2.pngCDel 3.pngCDel node c1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
½×24 = ½
CDel nodes hh.pngCDel split2.pngCDel node h.pngCDel split1.pngCDel nodes hh.png
10

See also

Regular and uniform honeycombs in 4-space:

Notes

  1. Coxeter, Regular and Semi-Regular Polytopes III, (1988), p318

References

Space Family / /
E2 Uniform tiling 0[3] δ3 hδ3 qδ3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 hδ4 qδ4
E4 Uniform 4-honeycomb 0[5] δ5 hδ5 qδ5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 hδ6 qδ6
E6 Uniform 6-honeycomb 0[7] δ7 hδ7 qδ7 222
E7 Uniform 7-honeycomb 0[8] δ8 hδ8 qδ8 133331
E8 Uniform 8-honeycomb 0[9] δ9 hδ9 qδ9 152251521
E9 Uniform 9-honeycomb 0[10]δ10hδ10qδ10
E10Uniform 10-honeycomb0[11]δ11hδ11qδ11
En-1Uniform (n-1)-honeycomb 0[n] δn hδn qδn 1k22k1k21