Bitruncated 16-cell honeycomb

Last updated
Bitruncated 16-cell honeycomb
(No image)
TypeUniform honeycomb
Schläfli symbol t1,2{3,3,4,3}
h2,3{4,3,3,4}
2t{3,31,1,1}
Coxeter-Dynkin diagram CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png = CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png = CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node g.pngCDel 3sg.pngCDel node g.png
4-face type Truncated 24-cell Schlegel half-solid truncated 24-cell.png
Bitruncated tesseract Schlegel half-solid bitruncated 16-cell.png
Cell type Cube Hexahedron.png
Truncated octahedron Truncated octahedron.png
Truncated tetrahedron Truncated tetrahedron.png
Face type{3}, {4}, {6}
Vertex figure
Coxeter group = [3,3,4,3]
= [4,3,31,1]
= [31,1,1,1]
Dual?
Properties vertex-transitive

In four-dimensional Euclidean geometry, the bitruncated 16-cell honeycomb (or runcicantic tesseractic honeycomb) is a uniform space-filling tessellation (or honeycomb) in Euclidean 4-space.

Contents

Symmetry constructions

There are 3 different symmetry constructions, all with 3-3 duopyramid vertex figures. The symmetry doubles on in three possible ways, while contains the highest symmetry.

Affine Coxeter group
[3,3,4,3]

[4,3,31,1]

[31,1,1,1]
Coxeter diagram CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.pngCDel node.pngCDel 3.pngCDel node 1.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png
4-facesCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node.png
CDel node 1.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 10lu.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
CDel node.pngCDel 4.pngCDel node 1.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node.png
CDel node 1.pngCDel splitsplit1.pngCDel branch3 11.pngCDel node 1.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes 11.png

See also

Regular and uniform honeycombs in 4-space:

Notes

    Related Research Articles

    <span class="mw-page-title-main">Tesseractic honeycomb</span>

    In four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {4,3,3,4}, and constructed by a 4-dimensional packing of tesseract facets.

    <span class="mw-page-title-main">16-cell honeycomb</span>

    In four-dimensional Euclidean geometry, the 16-cell honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {3,3,4,3}, and constructed by a 4-dimensional packing of 16-cell facets, three around every face.

    In four-dimensional Euclidean geometry, the 4-simplex honeycomb, 5-cell honeycomb or pentachoric-dispentachoric honeycomb is a space-filling tessellation honeycomb. It is composed of 5-cells and rectified 5-cells facets in a ratio of 1:1.

    In four-dimensional Euclidean geometry, the truncated 24-cell honeycomb is a uniform space-filling honeycomb. It can be seen as a truncation of the regular 24-cell honeycomb, containing tesseract and truncated 24-cell cells.

    In four-dimensional Euclidean geometry, the rectified 24-cell honeycomb is a uniform space-filling honeycomb. It is constructed by a rectification of the regular 24-cell honeycomb, containing tesseract and rectified 24-cell cells.

    In four-dimensional Euclidean geometry, the truncated 16-cell honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by 24-cell and truncated 16-cell facets.

    In four-dimensional Euclidean geometry, the rectified tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a rectification of a tesseractic honeycomb which creates new vertices on the middle of all the original edges, rectifying the cells into rectified tesseracts, and adding new 16-cell facets at the original vertices. Its vertex figure is an octahedral prism, {3,4}×{}.

    In four-dimensional Euclidean geometry, the bitruncated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a bitruncation of a tesseractic honeycomb. It is also called a cantic quarter tesseractic honeycomb from its q2{4,3,3,4} construction.

    <span class="mw-page-title-main">Birectified 16-cell honeycomb</span>

    In four-dimensional Euclidean geometry, the birectified 16-cell honeycomb is a uniform space-filling tessellation in Euclidean 4-space.

    In four-dimensional Euclidean geometry, the steriruncitruncated tesseractic honeycomb is a uniform space-filling honeycomb.

    In four-dimensional Euclidean geometry, the truncated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a truncation of a tesseractic honeycomb creating truncated tesseracts, and adding new 16-cell facets at the original vertices.

    In four-dimensional Euclidean geometry, the cantellated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a cantellation of a tesseractic honeycomb creating cantellated tesseracts, and new 24-cell and octahedral prism facets at the original vertices.

    In four-dimensional Euclidean geometry, the runcinated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space. It is constructed by a runcination of a tesseractic honeycomb creating runcinated tesseracts, and new tesseract, rectified tesseract and cuboctahedral prism facets.

    In four-dimensional Euclidean geometry, the cantitruncated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.

    In four-dimensional Euclidean geometry, the steritruncated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.

    In four-dimensional Euclidean geometry, the runcicantitruncated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.

    In four-dimensional Euclidean geometry, the runcicantellated tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.

    In four-dimensional Euclidean geometry, the steric tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.

    In four-dimensional Euclidean geometry, the steriruncic tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.

    In four-dimensional Euclidean geometry, the stericantic tesseractic honeycomb is a uniform space-filling tessellation in Euclidean 4-space.

    References

    Space Family / /
    E2 Uniform tiling {3[3]} δ3 hδ3 qδ3 Hexagonal
    E3 Uniform convex honeycomb {3[4]} δ4 hδ4 qδ4
    E4 Uniform 4-honeycomb {3[5]} δ5 hδ5 qδ5 24-cell honeycomb
    E5 Uniform 5-honeycomb {3[6]} δ6 hδ6 qδ6
    E6 Uniform 6-honeycomb {3[7]} δ7 hδ7 qδ7 222
    E7 Uniform 7-honeycomb {3[8]} δ8 hδ8 qδ8 133331
    E8 Uniform 8-honeycomb {3[9]} δ9 hδ9 qδ9 152251521
    E9 Uniform 9-honeycomb {3[10]}δ10hδ10qδ10
    E10Uniform 10-honeycomb{3[11]}δ11hδ11qδ11
    En-1Uniform (n-1)-honeycomb {3[n]} δn hδn qδn 1k22k1k21