7-demicubic honeycomb | |
---|---|
(No image) | |
Type | Uniform 7-honeycomb |
Family | Alternated hypercube honeycomb |
Schläfli symbol | h{4,3,3,3,3,3,4} h{4,3,3,3,3,31,1} ht0,7{4,3,3,3,3,3,4} |
Coxeter-Dynkin diagram | = = |
Facets | {3,3,3,3,3,4} h{4,3,3,3,3,3} |
Vertex figure | Rectified 7-orthoplex |
Coxeter group | [4,3,3,3,3,31,1] , [31,1,3,3,3,31,1] |
The 7-demicubic honeycomb, or demihepteractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 7-space. It is constructed as an alternation of the regular 7-cubic honeycomb.
It is composed of two different types of facets. The 7-cubes become alternated into 7-demicubes h{4,3,3,3,3,3} and the alternated vertices create 7-orthoplex {3,3,3,3,3,4} facets.
The vertex arrangement of the 7-demicubic honeycomb is the D7 lattice. [1] The 84 vertices of the rectified 7-orthoplex vertex figure of the 7-demicubic honeycomb reflect the kissing number 84 of this lattice. [2] The best known is 126, from the E7 lattice and the 331 honeycomb.
The D+
7 packing (also called D2
7) can be constructed by the union of two D7 lattices. The D+
n packings form lattices only in even dimensions. The kissing number is 26=64 (2n-1 for n<8, 240 for n=8, and 2n(n-1) for n>8). [3]
The D*
7 lattice (also called D4
7 and C2
7) can be constructed by the union of all four 7-demicubic lattices: [4] It is also the 7-dimensional body centered cubic, the union of two 7-cube honeycombs in dual positions.
The kissing number of the D*
7 lattice is 14 (2n for n≥5) and its Voronoi tessellation is a quadritruncated 7-cubic honeycomb, , containing all with tritruncated 7-orthoplex, Voronoi cells. [5]
There are three uniform construction symmetries of this tessellation. Each symmetry can be represented by arrangements of different colors on the 128 7-demicube facets around each vertex.
Coxeter group | Schläfli symbol | Coxeter-Dynkin diagram | Vertex figure Symmetry | Facets/verf |
---|---|---|---|---|
= [31,1,3,3,3,3,4] = [1+,4,3,3,3,3,3,4] | h{4,3,3,3,3,3,4} | = | [3,3,3,3,3,4] | 128: 7-demicube 14: 7-orthoplex |
= [31,1,3,3,31,1] = [1+,4,3,3,3,31,1] | h{4,3,3,3,3,31,1} | = | [35,1,1] | 64+64: 7-demicube 14: 7-orthoplex |
2×½ = [[(4,3,3,3,3,4,2+)]] | ht0,7{4,3,3,3,3,3,4} | 64+32+32: 7-demicube 14: 7-orthoplex |
The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.
In four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {4,3,3,4}, and constructed by a 4-dimensional packing of tesseract facets.
In four-dimensional Euclidean geometry, the 16-cell honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {3,3,4,3}, and constructed by a 4-dimensional packing of 16-cell facets, three around every face.
In four-dimensional Euclidean geometry, the 24-cell honeycomb, or icositetrachoric honeycomb is a regular space-filling tessellation of 4-dimensional Euclidean space by regular 24-cells. It can be represented by Schläfli symbol {3,4,3,3}.
In geometry, the 5-cubic honeycomb or penteractic honeycomb is the only regular space-filling tessellation in Euclidean 5-space. Four 5-cubes meet at each cubic cell, and it is more explicitly called an order-4 penteractic honeycomb.
The 5-demicube honeycomb is a uniform space-filling tessellation in Euclidean 5-space. It is constructed as an alternation of the regular 5-cube honeycomb.
In geometry, a hypercubic honeycomb is a family of regular honeycombs (tessellations) in n-dimensional spaces with the Schläfli symbols {4,3...3,4} and containing the symmetry of Coxeter group Rn for n ≥ 3.
The 6-demicubic honeycomb or demihexeractic honeycomb is a uniform space-filling tessellation in Euclidean 6-space. It is constructed as an alternation of the regular 6-cube honeycomb.
The 6-cubic honeycomb or hexeractic honeycomb is the only regular space-filling tessellation in Euclidean 6-space.
The 7-cubic honeycomb or hepteractic honeycomb is the only regular space-filling tessellation in Euclidean 7-space.
In geometry, the 8-cubic honeycomb or octeractic honeycomb is the only regular space-filling tessellation in Euclidean 8-space.
The 8-demicubic honeycomb, or demiocteractic honeycomb is a uniform space-filling tessellation in Euclidean 8-space. It is constructed as an alternation of the regular 8-cubic honeycomb.
In geometry, the alternated hypercube honeycomb is a dimensional infinite series of honeycombs, based on the hypercube honeycomb with an alternation operation. It is given a Schläfli symbol h{4,3...3,4} representing the regular form with half the vertices removed and containing the symmetry of Coxeter group for n ≥ 4. A lower symmetry form can be created by removing another mirror on an order-4 peak.
In 6-dimensional geometry, the 122 polytope is a uniform polytope, constructed from the E6 group. It was first published in E. L. Elte's 1912 listing of semiregular polytopes, named as V72 (for its 72 vertices).
In geometry, the 222 honeycomb is a uniform tessellation of the six-dimensional Euclidean space. It can be represented by the Schläfli symbol {3,3,32,2}. It is constructed from 221 facets and has a 122 vertex figure, with 54 221 polytopes around every vertex.
In 7-dimensional geometry, the 331 honeycomb is a uniform honeycomb, also given by Schläfli symbol {3,3,3,33,1} and is composed of 321 and 7-simplex facets, with 56 and 576 of them respectively around each vertex.
In seven-dimensional geometry, a rectified 7-orthoplex is a convex uniform 7-polytope, being a rectification of the regular 7-orthoplex.
In geometry, the 521 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. The symbol 521 is from Coxeter, named for the length of the 3 branches of its Coxeter-Dynkin diagram.
In five-dimensional Euclidean geometry, the 5-simplex honeycomb or hexateric honeycomb is a space-filling tessellation. Each vertex is shared by 12 5-simplexes, 30 rectified 5-simplexes, and 20 birectified 5-simplexes. These facet types occur in proportions of 2:2:1 respectively in the whole honeycomb.
In seven-dimensional Euclidean geometry, the 7-simplex honeycomb is a space-filling tessellation. The tessellation fills space by 7-simplex, rectified 7-simplex, birectified 7-simplex, and trirectified 7-simplex facets. These facet types occur in proportions of 2:2:2:1 respectively in the whole honeycomb.
Space | Family | / / | ||||
---|---|---|---|---|---|---|
E2 | Uniform tiling | {3[3]} | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | {3[4]} | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | {3[5]} | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | {3[6]} | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | {3[7]} | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | {3[8]} | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | {3[9]} | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | {3[10]} | δ10 | hδ10 | qδ10 | |
E10 | Uniform 10-honeycomb | {3[11]} | δ11 | hδ11 | qδ11 | |
En-1 | Uniform (n-1)-honeycomb | {3[n]} | δn | hδn | qδn | 1k2 • 2k1 • k21 |