Quarter hypercubic honeycomb

Last updated • a couple of secsFrom Wikipedia, The Free Encyclopedia

In geometry, the quarter hypercubic honeycomb (or quarter n-cubic honeycomb) is a dimensional infinite series of honeycombs, based on the hypercube honeycomb. It is given a Schläfli symbol q{4,3...3,4} or Coxeter symbol qδ4 representing the regular form with three quarters of the vertices removed and containing the symmetry of Coxeter group for n ≥ 5, with = and for quarter n-cubic honeycombs = . [1]

qδnName Schläfli
symbol
Coxeter diagrams Facets Vertex figure
qδ3 Square tiling uniform coloring 4.png
quarter square tiling
q{4,4}CDel nodes 11.pngCDel iaib.pngCDel nodes 10l.png or CDel nodes 11.pngCDel iaib.pngCDel nodes 01l.png

CDel nodes 10r.pngCDel iaib.pngCDel nodes 11.png or CDel nodes 01r.pngCDel iaib.pngCDel nodes 11.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 4.pngCDel node h1.png

h{4}={2}{ }×{ } Regular polygon 4 annotated.svg
{ }×{ }
qδ4 Tetrahedral-truncated tetrahedral honeycomb slab.png
quarter cubic honeycomb
q{4,3,4}CDel branch 10r.pngCDel 3ab.pngCDel branch 10l.png or CDel branch 01r.pngCDel 3ab.pngCDel branch 01l.png
CDel branch 11.pngCDel 3ab.pngCDel branch.png or CDel branch.pngCDel 3ab.pngCDel branch 11.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
Tetrahedron.png
h{4,3}
Truncated tetrahedron.png
h2{4,3}
T01 quarter cubic honeycomb verf.png
Elongated
triangular antiprism
qδ5 quarter tesseractic honeycomb q{4,32,4}CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png or CDel nodes 01rd.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes 01ld.png
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes 01ld.png or CDel nodes 01rd.pngCDel split2.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
Schlegel wireframe 16-cell.png
h{4,32}
Schlegel half-solid rectified 8-cell.png
h3{4,32}
Rectified tesseractic honeycomb verf.png
{3,4}×{}
qδ6 quarter 5-cubic honeycomb q{4,33,4}CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
Demipenteract graph ortho.svg
h{4,33}
5-demicube t03 D5.svg
h4{4,33}
Quarter 5-cubic honeycomb verf.png
Rectified 5-cell antiprism
qδ7 quarter 6-cubic honeycomb q{4,34,4}CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
Demihexeract ortho petrie.svg
h{4,34}
6-demicube t04 D6.svg
h5{4,34}
{3,3}×{3,3}
qδ8 quarter 7-cubic honeycomb q{4,35,4}CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
Demihepteract ortho petrie.svg
h{4,35}
7-demicube t05 D7.svg
h6{4,35}
{3,3}×{3,31,1}
qδ9 quarter 8-cubic honeycomb q{4,36,4}CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes 10lu.png
CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node h1.png
Demiocteract ortho petrie.svg
h{4,36}
8-demicube t06 D8.svg
h7{4,36}
{3,3}×{3,32,1}
{3,31,1}×{3,31,1}
 
qδnquarter n-cubic honeycombq{4,3n-3,4}...h{4,3n-2}hn-2{4,3n-2}...

See also

Related Research Articles

<span class="mw-page-title-main">Tetrahedral-octahedral honeycomb</span> Quasiregular space-filling tesselation

The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.

<span class="mw-page-title-main">Uniform 8-polytope</span>

In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets.

<span class="mw-page-title-main">Uniform 7-polytope</span>

In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets.

<span class="mw-page-title-main">Uniform 9-polytope</span>

In nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets. Each 7-polytope ridge being shared by exactly two 8-polytope facets.

<span class="mw-page-title-main">Uniform 6-polytope</span>

In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes.

<span class="mw-page-title-main">Tesseractic honeycomb</span>

In four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {4,3,3,4}, and constructed by a 4-dimensional packing of tesseract facets.

In geometry, a hypercubic honeycomb is a family of regular honeycombs (tessellations) in n-dimensional spaces with the Schläfli symbols {4,3...3,4} and containing the symmetry of Coxeter group Rn for n ≥ 3.

The 8-cubic honeycomb or octeractic honeycomb is the only regular space-filling tessellation in Euclidean 8-space.

<span class="mw-page-title-main">Alternated hypercubic honeycomb</span>

In geometry, the alternated hypercube honeycomb is a dimensional infinite series of honeycombs, based on the hypercube honeycomb with an alternation operation. It is given a Schläfli symbol h{4,3...3,4} representing the regular form with half the vertices removed and containing the symmetry of Coxeter group for n ≥ 4. A lower symmetry form can be created by removing another mirror on an order-4 peak.

In five-dimensional Euclidean geometry, the 5-simplex honeycomb or hexateric honeycomb is a space-filling tessellation. Each vertex is shared by 12 5-simplexes, 30 rectified 5-simplexes, and 20 birectified 5-simplexes. These facet types occur in proportions of 2:2:1 respectively in the whole honeycomb.

In geometry an omnitruncated simplectic honeycomb or omnitruncated n-simplex honeycomb is an n-dimensional uniform tessellation, based on the symmetry of the affine Coxeter group. Each is composed of omnitruncated simplex facets. The vertex figure for each is an irregular n-simplex.

In six-dimensional Euclidean geometry, the 6-simplex honeycomb is a space-filling tessellation. The tessellation fills space by 6-simplex, rectified 6-simplex, and birectified 6-simplex facets. These facet types occur in proportions of 1:1:1 respectively in the whole honeycomb.

<span class="mw-page-title-main">Simplectic honeycomb</span> Tiling of n-dimensional space

In geometry, the simplectic honeycomb is a dimensional infinite series of honeycombs, based on the affine Coxeter group symmetry. It is represented by a Coxeter-Dynkin diagram as a cyclic graph of n + 1 nodes with one node ringed. It is composed of n-simplex facets, along with all rectified n-simplices. It can be thought of as an n-dimensional hypercubic honeycomb that has been subdivided along all hyperplanes , then stretched along its main diagonal until the simplices on the ends of the hypercubes become regular. The vertex figure of an n-simplex honeycomb is an expanded n-simplex.

<span class="mw-page-title-main">Cyclotruncated simplectic honeycomb</span>

In geometry, the cyclotruncated simplectic honeycomb is a dimensional infinite series of honeycombs, based on the symmetry of the affine Coxeter group. It is given a Schläfli symbol t0,1{3[n+1]}, and is represented by a Coxeter-Dynkin diagram as a cyclic graph of n+1 nodes with two adjacent nodes ringed. It is composed of n-simplex facets, along with all truncated n-simplices.

In seven-dimensional Euclidean geometry, the 7-simplex honeycomb is a space-filling tessellation. The tessellation fills space by 7-simplex, rectified 7-simplex, birectified 7-simplex, and trirectified 7-simplex facets. These facet types occur in proportions of 2:2:2:1 respectively in the whole honeycomb.

In eighth-dimensional Euclidean geometry, the 8-simplex honeycomb is a space-filling tessellation. The tessellation fills space by 8-simplex, rectified 8-simplex, birectified 8-simplex, and trirectified 8-simplex facets. These facet types occur in proportions of 1:1:1:1 respectively in the whole honeycomb.

In six-dimensional Euclidean geometry, the omnitruncated 6-simplex honeycomb is a space-filling tessellation. It is composed entirely of omnitruncated 6-simplex facets.

In five-dimensional Euclidean geometry, the quarter 5-cubic honeycomb is a uniform space-filling tessellation. It has half the vertices of the 5-demicubic honeycomb, and a quarter of the vertices of a 5-cube honeycomb. Its facets are 5-demicubes and runcinated 5-demicubes.

In seven-dimensional Euclidean geometry, the quarter 7-cubic honeycomb is a uniform space-filling tessellation. It has half the vertices of the 7-demicubic honeycomb, and a quarter of the vertices of a 7-cube honeycomb. Its facets are 7-demicubes, pentellated 7-demicubes, and {31,1,1}×{3,3} duoprisms.

In six-dimensional Euclidean geometry, the quarter 6-cubic honeycomb is a uniform space-filling tessellation. It has half the vertices of the 6-demicubic honeycomb, and a quarter of the vertices of a 6-cube honeycomb. Its facets are 6-demicubes, stericated 6-demicubes, and {3,3}×{3,3} duoprisms.

References

  1. Coxeter, Regular and semi-regular honeycoms, 1988, p.318-319
Space Family / /
E2 Uniform tiling {3[3]} δ3 hδ3 qδ3 Hexagonal
E3 Uniform convex honeycomb {3[4]} δ4 hδ4 qδ4
E4 Uniform 4-honeycomb {3[5]} δ5 hδ5 qδ5 24-cell honeycomb
E5 Uniform 5-honeycomb {3[6]} δ6 hδ6 qδ6
E6 Uniform 6-honeycomb {3[7]} δ7 hδ7 qδ7 222
E7 Uniform 7-honeycomb {3[8]} δ8 hδ8 qδ8 133331
E8 Uniform 8-honeycomb {3[9]} δ9 hδ9 qδ9 152251521
E9 Uniform 9-honeycomb {3[10]}δ10hδ10qδ10
E10Uniform 10-honeycomb{3[11]}δ11hδ11qδ11
En-1Uniform (n-1)-honeycomb {3[n]} δn hδn qδn 1k22k1k21