5-demicube

Last updated
Demipenteract
(5-demicube)
Demipenteract graph ortho.svg
Petrie polygon projection
Type Uniform 5-polytope
Family (Dn)5-demicube
Families (En) k21 polytope
1k2 polytope
Coxeter
symbol
121
Schläfli
symbols
{3,32,1} = h{4,33}
s{2,4,3,3} or h{2}h{4,3,3}
sr{2,2,4,3} or h{2}h{2}h{4,3}
h{2}h{2}h{2}h{4}
s{21,1,1,1} or h{2}h{2}h{2}s{2}
Coxeter
diagrams
CDel nodes 10ru.pngCDel split2.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png = CDel node h1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 4.pngCDel node.png
CDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.pngCDel 2x.pngCDel node h.png
4-faces2610 {31,1,1} Cross graph 4.svg
16 {3,3,3} 4-simplex t0.svg
Cells12040 {31,0,1} 3-simplex t0.svg
80 {3,3} 3-simplex t0.svg
Faces160 {3} 2-simplex t0.svg
Edges80
Vertices16
Vertex
figure
Rectified 5-cell 5-demicube verf.svg
Petrie
polygon
Octagon
Symmetry D5, [32,1,1] = [1+,4,33]
[24]+
Properties convex

In five-dimensional geometry, a demipenteract or 5-demicube is a semiregular 5-polytope, constructed from a 5-hypercube (penteract) with alternated vertices removed.

Contents

It was discovered by Thorold Gosset. Since it was the only semiregular 5-polytope (made of more than one type of regular facets), he called it a 5-ic semi-regular. E. L. Elte identified it in 1912 as a semiregular polytope, labeling it as HM5 for a 5-dimensional half measure polytope.

Coxeter named this polytope as 121 from its Coxeter diagram, which has branches of length 2, 1 and 1 with a ringed node on one of the short branches, CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3a.pngCDel nodea.png and Schläfli symbol or {3,32,1}.

It exists in the k21 polytope family as 121 with the Gosset polytopes: 221, 321, and 421.

The graph formed by the vertices and edges of the demipenteract is sometimes called the Clebsch graph, though that name sometimes refers to the folded cube graph of order five instead.

Cartesian coordinates

Cartesian coordinates for the vertices of a demipenteract centered at the origin and edge length 22 are alternate halves of the penteract:

(±1,±1,±1,±1,±1)

with an odd number of plus signs.

As a configuration

This configuration matrix represents the 5-demicube. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-demicube. The nondiagonal numbers say how many of the column's element occur in or at the row's element. [1] [2]

The diagonal f-vector numbers are derived through the Wythoff construction, dividing the full group order of a subgroup order by removing one mirror at a time. [3]

D5CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngk-facefkf0f1f2f3f4k-figureNotes(*)
A4CDel nodea x.pngCDel 2.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png( )f0161030102055 rectified 5-cell D5/A4 = 16*5!/5! = 16
A2A1A1CDel nodea 1.pngCDel 2.pngCDel nodes x0.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.png{ }f128063632 triangular prism D5/A2A1A1 = 16*5!/3!/2/2 = 80
A2A1CDel nodea 1.pngCDel 3a.pngCDel nodes 0x.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png {3} f2331601221 Isosceles triangle D5/A2A1 = 16*5!/3!/2 = 160
A3A1CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png h{4,3} f346440*20Segment { }D5/A3A1 = 16*5!/4!/2 = 40
A3CDel nodea 1.pngCDel 3a.pngCDel nodes 0x.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png {3,3} 464*8011Segment { }D5/A3 = 16*5!/4! = 80
D4CDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png h{4,3,3} f4824328810*Point ( )D5/D4 = 16*5!/8/4! = 10
A4CDel nodea 1.pngCDel 3a.pngCDel nodes 0x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png {3,3,3} 5101005*16Point ( )D5/A4 = 16*5!/5! = 16

* = The number of elements (diagonal values) can be computed by the symmetry order D5 divided by the symmetry order of the subgroup with selected mirrors removed.

Projected images

Demipenteract wf.png
Perspective projection.

Images

orthographic projections
Coxeter plane B5
Graph 5-demicube t0 B5.svg
Dihedral symmetry [10/2]
Coxeter planeD5D4
Graph 5-demicube t0 D5.svg 5-demicube t0 D4.svg
Dihedral symmetry[8][6]
Coxeter planeD3A3
Graph 5-demicube t0 D3.svg 5-demicube t0 A3.svg
Dihedral symmetry[4][4]

It is a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family.

There are 23 Uniform 5-polytopes (uniform 5-polytopes) that can be constructed from the D5 symmetry of the demipenteract, 8 of which are unique to this family, and 15 are shared within the penteractic family.

D5 polytopes
5-demicube t0 D5.svg
h{4,3,3,3}
5-demicube t01 D5.svg
h2{4,3,3,3}
5-demicube t02 D5.svg
h3{4,3,3,3}
5-demicube t03 D5.svg
h4{4,3,3,3}
5-demicube t012 D5.svg
h2,3{4,3,3,3}
5-demicube t013 D5.svg
h2,4{4,3,3,3}
5-demicube t023 D5.svg
h3,4{4,3,3,3}
5-demicube t0123 D5.svg
h2,3,4{4,3,3,3}

The 5-demicube is third in a dimensional series of semiregular polytopes. Each progressive uniform polytope is constructed vertex figure of the previous polytope. Thorold Gosset identified this series in 1900 as containing all regular polytope facets, containing all simplexes and orthoplexes (5-simplices and 5-orthoplexes in the case of the 5-demicube). In Coxeter's notation the 5-demicube is given the symbol 121.

k21 figures in n dimensions
SpaceFiniteEuclideanHyperbolic
En 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1E4=A4E5=D5 E6 E7 E8 E9 = = E8+E10 = = E8++
Coxeter
diagram
CDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea 1.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png
Symmetry [3−1,2,1][30,2,1][31,2,1][32,2,1][33,2,1][34,2,1][35,2,1][36,2,1]
Order 121201,92051,8402,903,040696,729,600
Graph Triangular prism.png 4-simplex t1.svg Demipenteract graph ortho.svg E6 graph.svg E7 graph.svg E8 graph.svg --
Name 121 021 121 221 321 421 521 621
1k2 figures in n dimensions
SpaceFiniteEuclideanHyperbolic
n 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1E4=A4E5=D5 E6 E7 E8 E9 = = E8+E10 = = E8++
Coxeter
diagram
CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01l.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Symmetry
(order)
[3−1,2,1][30,2,1][31,2,1][[32,2,1]][33,2,1][34,2,1][35,2,1][36,2,1]
Order 121201,920103,6802,903,040696,729,600
Graph Trigonal hosohedron.png 4-simplex t0.svg Demipenteract graph ortho.svg Up 1 22 t0 E6.svg Up2 1 32 t0 E7.svg Gosset 1 42 polytope petrie.svg --
Name 1−1,2 102 112 122 132 142 152 162

References

  1. Coxeter, Regular Polytopes, sec 1.8 Configurations
  2. Coxeter, Complex Regular Polytopes, p.117
  3. Klitzing, Richard. "x3o3o *b3o3o - hin".
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compoundsPolytope operations