1 42 polytope

Last updated
4 21 t0 E6.svg
421
CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
1 42 polytope E6 Coxeter plane.svg
142
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
2 41 t0 E6.svg
241
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.png
4 21 t1 E6.svg
Rectified 421
CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
4 21 t4 E6.svg
Rectified 142
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
2 41 t1 E6.svg
Rectified 241
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.png
4 21 t2 E6.svg
Birectified 421
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
4 21 t3 E6.svg
Trirectified 421
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Orthogonal projections in E6 Coxeter plane

In 8-dimensional geometry, the 142 is a uniform 8-polytope, constructed within the symmetry of the E8 group.

Contents

Its Coxeter symbol is 142, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequences.

The rectified 142 is constructed by points at the mid-edges of the 142 and is the same as the birectified 241, and the quadrirectified 421.

These polytopes are part of a family of 255 (28  1) convex uniform polytopes in 8-dimensions, made of uniform polytope facets and vertex figures, defined by all permutations of rings in this Coxeter-Dynkin diagram: CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

142 polytope

142
Type Uniform 8-polytope
Family 1k2 polytope
Schläfli symbol {3,34,2}
Coxeter symbol 142
Coxeter diagrams CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
CDel node 1.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
7-faces2400:
240 132 Gosset 1 32 petrie.svg
2160 141 Demihepteract ortho petrie.svg
6-faces106080:
6720 122 Gosset 1 22 polytope.svg
30240 131 Demihexeract ortho petrie.svg
69120 {35} 6-simplex t0.svg
5-faces725760:
60480 112 Demipenteract graph ortho.svg
181440 121 Demipenteract graph ortho.svg
483840 {34} 5-simplex t0.svg
4-faces2298240:
241920 102 4-simplex t0.svg
604800 111 4-cube t3.svg
1451520 {33} 4-simplex t0.svg
Cells3628800:
1209600 101 3-simplex t0.svg
2419200 {32} 3-simplex t0.svg
Faces2419200 {3} 2-simplex t0.svg
Edges483840
Vertices17280
Vertex figure t2{36} 7-simplex t2.svg
Petrie polygon 30-gon
Coxeter group E8, [34,2,1]
Properties convex

The 142 is composed of 2400 facets: 240 132 polytopes, and 2160 7-demicubes (141). Its vertex figure is a birectified 7-simplex.

This polytope, along with the demiocteract, can tessellate 8-dimensional space, represented by the symbol 152, and Coxeter-Dynkin diagram: CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Alternate names

Coordinates

The 17280 vertices can be defined as sign and location permutations of:

All sign combinations (32): (280×32=8960 vertices)

(4, 2, 2, 2, 2, 0, 0, 0)

Half of the sign combinations (128): ((1+8+56)×128=8320 vertices)

(2, 2, 2, 2, 2, 2, 2, 2)
(5, 1, 1, 1, 1, 1, 1, 1)
(3, 3, 3, 1, 1, 1, 1, 1)

The edge length is 22 in this coordinate set, and the polytope radius is 42.

Construction

It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram: CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the end of the 2-length branch leaves the 7-demicube, 141, CDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the end of the 4-length branch leaves the 132, CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 7-simplex, 042, CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders. [3]

E8CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png k-face fkf0f1f2f3f4f5f6f7 k-figure notes
A7CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 0x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png( )f01728056420280560702804205616816828562888 2r{36} E8/A7 = 192*10!/8! = 17280
A4A2A1CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodes x1.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.png{ }f12483840151530530301030151015353{3}x{3,3,3}E8/A4A2A1 = 192*10!/5!/2/2 = 483840
A3A2A1CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel branch 01.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png {3} f233241920024186412468142{3.3}v{ }E8/A3A2A1 = 192*10!/4!/3!/2 = 2419200
A3A3CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel branch 01r.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png 110 f34641209600*14046064041 {3,3}v( ) E8/A3A3 = 192*10!/4!/4! = 1209600
A3A2A1CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel branch 01l.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png464*241920002316336132{3}v{ }E8/A3A2A1 = 192*10!/4!/3!/2 = 2419200
A4A3CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel branch 01r.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 120 f45101050241920**40060040 {3,3} E8/A4A3 = 192*10!/4!/4! = 241920
D4A2CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png 111 8243288*604800*13033031 {3}v( ) E8/D4A2 = 192*10!/8/4!/3! = 604800
A4A1A1CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01l.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png 120 5101005**145152002214122 { }v{ } E8/A4A1A1 = 192*10!/5!/2/2 = 1451520
D5A2CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 121 f5168016080401610060480**30030 {3} E8/D5A2 = 192*10!/16/5!/3! = 40480
D5A1CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png1680160408001016*181440*12021 { }v( ) E8/D5A1 = 192*10!/16/5!/2 = 181440
A5A1CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01l.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png 130 61520015006**48384002112E8/A5A1 = 192*10!/6!/2 = 483840
E6A1CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 122 f672720216010801080216270216272706720**20{ }E8/E6A1 = 192*10!/72/6!/2 = 6720
D6CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png 131 3224064016048006019201232*30240*11E8/D6 = 192*10!/32/6! = 30240
A6A1CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01l.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png 140 721350350021007**6912002E8/A6A1 = 192*10!/7!/2 = 69120
E7CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 132 f757610080403202016030240403275601209675615122016561260240*( )E8/E7 = 192*10!/72/8! = 240
D7CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png 141 64672224056022400280134408444801464*2160E8/D7 = 192*10!/64/7! = 2160

Projections

Shown in 3D projection using the basis vectors [u,v,w] giving H3 symmetry:
u = (1, ph, 0, -1, ph, 0,0,0)
v = (ph, 0, 1, ph, 0, -1,0,0)
w = (0, 1, ph, 0, -1, ph,0,0)
The 17280 projected 142 polytope vertices are sorted and tallied by their 3D norm generating the increasingly transparent hulls for each set of tallied norms. Notice the last two outer hulls are a combination of two overlapped Dodecahedrons (40) and a Nonuniform Rhombicosidodecahedron (60). E8 142-3D Concentric Hulls.png
Shown in 3D projection using the basis vectors [u,v,w] giving H3 symmetry:
  • u = (1, φ, 0, −1, φ, 0,0,0)
  • v = (φ, 0, 1, φ, 0, −1,0,0)
  • w = (0, 1, φ, 0, −1, φ,0,0)
The 17280 projected 142 polytope vertices are sorted and tallied by their 3D norm generating the increasingly transparent hulls for each set of tallied norms. Notice the last two outer hulls are a combination of two overlapped Dodecahedrons (40) and a Nonuniform Rhombicosidodecahedron (60).

Orthographic projections are shown for the sub-symmetries of E8: E7, E6, B8, B7, B6, B5, B4, B3, B2, A7, and A5 Coxeter planes, as well as two more symmetry planes of order 20 and 24. Vertices are shown as circles, colored by their order of overlap in each projective plane.

E8
[30]
E7
[18]
E6
[12]
Gosset 1 42 polytope petrie.svg
(1)
1 42 t0 e7.svg
(1,3,6)
1 42 polytope E6 Coxeter plane.svg
(8,16,24,32,48,64,96)
[20][24][6]
1 42 t0 p20.svg 1 42 t0 p24.svg 1 42 t0 mox.svg
(1,2,3,4,5,6,7,8,10,11,12,14,16,18,19,20)
D3 / B2 / A3
[4]
D4 / B3 / A2
[6]
D5 / B4
[8]
1 42 t0 B2.svg
(32,160,192,240,480,512,832,960)
1 42 t0 B3.svg
(72,216,432,720,864,1080)
1 42 t0 B4.svg
(8,16,24,32,48,64,96)
D6 / B5 / A4
[10]
D7 / B6
[12]
D8 / B7 / A6
[14]
1 42 t0 B5.svg 1 42 t0 B6.svg 1 42 t0 B7.svg
B8
[16/2]
A5
[6]
A7
[8]
1 42 t0 B8.svg 1 42 t0 A5.svg 1 42 t0 A7.svg
1k2 figures in n dimensions
SpaceFiniteEuclideanHyperbolic
n 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1E4=A4E5=D5 E6 E7 E8 E9 = = E8+E10 = = E8++
Coxeter
diagram
CDel node.pngCDel 3.pngCDel node.pngCDel 2.pngCDel node 1.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01l.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 01lr.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
Symmetry
(order)
[3−1,2,1][30,2,1][31,2,1][[3<sup>2,2,1</sup>]][33,2,1][34,2,1][35,2,1][36,2,1]
Order 121201,920103,6802,903,040696,729,600
Graph Trigonal hosohedron.png 4-simplex t0.svg Demipenteract graph ortho.svg Up 1 22 t0 E6.svg Up2 1 32 t0 E7.svg Gosset 1 42 polytope petrie.svg --
Name 1−1,2 102 112 122 132 142 152 162

Rectified 142 polytope

Rectified 142
Type Uniform 8-polytope
Schläfli symbol t1{3,34,2}
Coxeter symbol 0421
Coxeter diagrams CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
CDel node.pngCDel 3.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png
7-faces19680
6-faces382560
5-faces2661120
4-faces9072000
Cells16934400
Faces16934400
Edges7257600
Vertices483840
Vertex figure {3,3,3}×{3}×{}
Coxeter group E8, [34,2,1]
Properties convex

The rectified 142 is named from being a rectification of the 142 polytope, with vertices positioned at the mid-edges of the 142. It can also be called a 0421 polytope with the ring at the center of 3 branches of length 4, 2, and 1.

Alternate names

Construction

It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space.

The facet information can be extracted from its Coxeter-Dynkin diagram: CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the end of the 1-length branch leaves the birectified 7-simplex, CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

Removing the node on the end of the 2-length branch leaves the birectified 7-cube, CDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Removing the node on the end of the 3-length branch leaves the rectified 132, CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 5-cell-triangle duoprism prism, CDel nodea.pngCDel 3a.pngCDel nodea 1.pngCDel 2.pngCDel nodea 1.pngCDel 2.pngCDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png.

Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders. [5]

E8CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png k-face fkf0f1f2f3f4f5f6f7 k-figure
A4A2A1CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodes x0.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.png( )f0483840303015601015603060520306030301020303015610101563523{3,3,3}x{3,3}x{}
A3A1A1CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodes 1x.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png{ }f127257600214128461481264461284164821412
A3A2CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodes 1x.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png {3} f2334838400**1140014460046640064410411
A3A2A1CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel branch 10.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png33*2419200*02040108060401204060801402
A2A2A1CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel node x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png33**96768000021301263313663133621312
A3A3CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodes 1x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 0200 f3464001209600****14000046000064000410
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png 0110 612440*1209600***10400040600060400401
A3A2CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png612404**4838400**01130013330033310311
A3A2A1CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png612044***2419200*00203010603030601302
A3A1A1CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png 0200 46004****725760000021201242112421212
A4A3CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 0210 f410302010055000241920*****40000060000400
A4A2CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png10302001050500*967680****13000033000310
D4A2CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png 0111 249632323208880**604800***10300030300301
A4A1CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png 0210 10301002000505***2903040**01120012210211
A4A1A1CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png10300102000055****1451520*00202010401202
A4A1CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png 0300 510001000005*****290304000021101221112
D5A2CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 0211 f58048032016016080808040016161000060480*****30000300 {3}
A5A1CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 0220 20906006015030015060600*483840****12000210 { }v()
D5A1CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png 0211 80480160160320040808080001016160**181440***10200201
A5CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png 0310 1560200600015030000606***967680**01110111 ( )v( )v()
A5A1CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png1560020600001530000066****483840*00201102 { }v()
CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png 0400 6150020000015000006*****48384000021012
E6A1CDel nodea.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 0221 f672064804320216043201080108021601080108021643227043221602772270006720****200{ }
A6CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 0320 3521014002103501050105021042021070700*138240***110
D6CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png 0311 2401920640640192001604804809600060192192192001232320**30240**101
A6CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png 0410 211053501400035010500021042000707***138240*011
A6A1CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 2.pngCDel nodea x.pngCDel 2.pngCDel nodea.png211050351400003510500002142000077****69120002
E7CDel nodea x.pngCDel 2.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 0321 f710080120960806404032012096020160201606048030240604804032120967560241921209612096756403215124032201605657612600240**( )
A7CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodes 1x.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png 0420 56420280056070028004200560168016802805602808080*17280*
D7CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch 10.pngCDel 3a.pngCDel nodea.pngCDel 2.pngCDel nodea x.png 0411 6726720224022408960056022402240672000280134413442688008444844844800146464**2160

Projections

Orthographic projections are shown for the sub-symmetries of B6, B5, B4, B3, B2, A7, and A5 Coxeter planes. Vertices are shown as circles, colored by their order of overlap in each projective plane.

(Planes for E8: E7, E6, B8, B7, [24] are not shown for being too large to display.)


D3 / B2 / A3
[4]
D4 / B3 / A2
[6]
D5 / B4
[8]
4 21 t4 B2.svg 4 21 t4 B3.svg 4 21 t4 B4.svg
D6 / B5 / A4
[10]
D7 / B6
[12]
[6]
4 21 t4 B5.svg 4 21 t4 B6.svg 4 21 t4 mox.svg
A5
[6]
A7
[8]
 
[20]
4 21 t4 A5.svg 4 21 t4 A7.svg 4 21 t4 p20.svg

See also

Notes

  1. Elte, E. L. (1912), The Semiregular Polytopes of the Hyperspaces, Groningen: University of Groningen
  2. Klitzing, (o3o3o3x *c3o3o3o3o - bif)
  3. Coxeter, Regular Polytopes, 11.8 Gossett figures in six, seven, and eight dimensions, p. 202-203
  4. Klitzing, (o3o3o3x *c3o3o3o3o - buffy)
  5. Coxeter, Regular Polytopes, 11.8 Gossett figures in six, seven, and eight dimensions, p. 202-203

Related Research Articles

Gosset–Elte figures

In geometry, the Gosset–Elte figures, named by Coxeter after Thorold Gosset and E. L. Elte, are a group of uniform polytopes which are not regular, generated by a Wythoff construction with mirrors all related by order-2 and order-3 dihedral angles. They can be seen as one-end-ringed Coxeter–Dynkin diagrams.

Rectified 5-simplexes

In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex.

2<sub> 31</sub> polytope

In 7-dimensional geometry, 231 is a uniform polytope, constructed from the E7 group.

1<sub> 22</sub> polytope

In 6-dimensional geometry, the 122 polytope is a uniform polytope, constructed from the E6 group. It was first published in E. L. Elte's 1912 listing of semiregular polytopes, named as V72 (for its 72 vertices).

1<sub> 32</sub> polytope

In 7-dimensional geometry, 132 is a uniform polytope, constructed from the E7 group.

2<sub> 41</sub> polytope

In 8-dimensional geometry, the 241 is a uniform 8-polytope, constructed within the symmetry of the E8 group.

2<sub> 21</sub> polytope

In 6-dimensional geometry, the 221 polytope is a uniform 6-polytope, constructed within the symmetry of the E6 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 6-ic semi-regular figure. It is also called the Schläfli polytope.

3<sub> 21</sub> polytope

In 7-dimensional geometry, the 321 polytope is a uniform 7-polytope, constructed within the symmetry of the E7 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 7-ic semi-regular figure.

4<sub> 21</sub> polytope

In 8-dimensional geometry, the 421 is a semiregular uniform 8-polytope, constructed within the symmetry of the E8 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 8-ic semi-regular figure.

In geometry, the 152 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. It contains 142 and 151 facets, in a birectified 8-simplex vertex figure. It is the final figure in the 1k2 polytope family.

In geometry, the 222 honeycomb is a uniform tessellation of the six-dimensional Euclidean space. It can be represented by the Schläfli symbol {3,3,32,2}. It is constructed from 221 facets and has a 122 vertex figure, with 54 221 polytopes around every vertex.

In 7-dimensional geometry, the 331 honeycomb is a uniform honeycomb, also given by Schläfli symbol {3,3,3,33,1} and is composed of 321 and 7-simplex facets, with 56 and 576 of them respectively around each vertex.

In 7-dimensional geometry, 133 is a uniform honeycomb, also given by Schläfli symbol {3,33,3}, and is composed of 132 facets.

Pentellated 6-simplexes

In six-dimensional geometry, a pentellated 6-simplex is a convex uniform 6-polytope with 5th order truncations of the regular 6-simplex.

Rectified 6-simplexes

In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a rectification of the regular 6-simplex.

In geometry, the 521 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. The symbol 521 is from Coxeter, named for the length of the 3 branches of its Coxeter-Dynkin diagram.

Rectified 7-simplexes Convex uniform 7-polytope in seven-dimensional geometry

In seven-dimensional geometry, a rectified 7-simplex is a convex uniform 7-polytope, being a rectification of the regular 7-simplex.

Rectified 8-simplexes

In eight-dimensional geometry, a rectified 8-simplex is a convex uniform 8-polytope, being a rectification of the regular 8-simplex.

In geometry, an E9 honeycomb is a tessellation of uniform polytopes in hyperbolic 9-dimensional space. , also (E10) is a paracompact hyperbolic group, so either facets or vertex figures will not be bounded.

Simplectic honeycomb

In geometry, the simplectic honeycomb is a dimensional infinite series of honeycombs, based on the affine Coxeter group symmetry. It is given a Schläfli symbol {3[n+1]}, and is represented by a Coxeter-Dynkin diagram as a cyclic graph of n+1 nodes with one node ringed. It is composed of n-simplex facets, along with all rectified n-simplices. It can be thought of as an n-dimensional hypercubic honeycomb that has been subdivided along all hyperplanes , then stretched along its main diagonal until the simplices on the ends of the hypercubes become regular. The vertex figure of an n-simplex honeycomb is an expanded n-simplex.

References

Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds