421 | 142 | 241 |
Rectified 421 | Rectified 142 | Rectified 241 |
Birectified 421 | Trirectified 421 | |
Orthogonal projections in E6 Coxeter plane |
---|
In 8-dimensional geometry, the 142 is a uniform 8-polytope, constructed within the symmetry of the E8 group.
Its Coxeter symbol is 142, describing its bifurcating Coxeter-Dynkin diagram, with a single ring on the end of the 1-node sequences.
The rectified 142 is constructed by points at the mid-edges of the 142 and is the same as the birectified 241, and the quadrirectified 421.
These polytopes are part of a family of 255 (28 − 1) convex uniform polytopes in 8 dimensions, made of uniform polytope facets and vertex figures, defined by all non-empty combinations of rings in this Coxeter-Dynkin diagram: .
142 | |
---|---|
Type | Uniform 8-polytope |
Family | 1k2 polytope |
Schläfli symbol | {3,34,2} |
Coxeter symbol | 142 |
Coxeter diagrams | |
7-faces | 2400: 240 132 2160 141 |
6-faces | 106080: 6720 122 30240 131 69120 {35} |
5-faces | 725760: 60480 112 181440 121 483840 {34} |
4-faces | 2298240: 241920 102 604800 111 1451520 {33} |
Cells | 3628800: 1209600 101 2419200 {32} |
Faces | 2419200 {3} |
Edges | 483840 |
Vertices | 17280 |
Vertex figure | t2{36} |
Petrie polygon | 30-gon |
Coxeter group | E8, [34,2,1] |
Properties | convex |
The 142 is composed of 2400 facets: 240 132 polytopes, and 2160 7-demicubes (141). Its vertex figure is a birectified 7-simplex.
This polytope, along with the demiocteract, can tessellate 8-dimensional space, represented by the symbol 152, and Coxeter-Dynkin diagram: .
The 17280 vertices can be defined as sign and location permutations of:
All sign combinations (32): (280×32=8960 vertices)
Half of the sign combinations (128): ((1+8+56)×128=8320 vertices)
The edge length is 2√2 in this coordinate set, and the polytope radius is 4√2.
It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram: .
Removing the node on the end of the 2-length branch leaves the 7-demicube, 141, .
Removing the node on the end of the 4-length branch leaves the 132, .
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the birectified 7-simplex, 042, .
Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders. [3]
Configuration matrix | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E8 | k-face | fk | f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7 | k-figure | notes | |||||||||
A7 | ( ) | f0 | 17280 | 56 | 420 | 280 | 560 | 70 | 280 | 420 | 56 | 168 | 168 | 28 | 56 | 28 | 8 | 8 | 2r{36} | E8/A7 = 192*10!/8! = 17280 | |
A4A2A1 | { } | f1 | 2 | 483840 | 15 | 15 | 30 | 5 | 30 | 30 | 10 | 30 | 15 | 10 | 15 | 3 | 5 | 3 | {3}x{3,3,3} | E8/A4A2A1 = 192*10!/5!/2/2 = 483840 | |
A3A2A1 | {3} | f2 | 3 | 3 | 2419200 | 2 | 4 | 1 | 8 | 6 | 4 | 12 | 4 | 6 | 8 | 1 | 4 | 2 | {3.3}v{ } | E8/A3A2A1 = 192*10!/4!/3!/2 = 2419200 | |
A3A3 | 110 | f3 | 4 | 6 | 4 | 1209600 | * | 1 | 4 | 0 | 4 | 6 | 0 | 6 | 4 | 0 | 4 | 1 | {3,3}v( ) | E8/A3A3 = 192*10!/4!/4! = 1209600 | |
A3A2A1 | 4 | 6 | 4 | * | 2419200 | 0 | 2 | 3 | 1 | 6 | 3 | 3 | 6 | 1 | 3 | 2 | {3}v{ } | E8/A3A2A1 = 192*10!/4!/3!/2 = 2419200 | |||
A4A3 | 120 | f4 | 5 | 10 | 10 | 5 | 0 | 241920 | * | * | 4 | 0 | 0 | 6 | 0 | 0 | 4 | 0 | {3,3} | E8/A4A3 = 192*10!/4!/4! = 241920 | |
D4A2 | 111 | 8 | 24 | 32 | 8 | 8 | * | 604800 | * | 1 | 3 | 0 | 3 | 3 | 0 | 3 | 1 | {3}v( ) | E8/D4A2 = 192*10!/8/4!/3! = 604800 | ||
A4A1A1 | 120 | 5 | 10 | 10 | 0 | 5 | * | * | 1451520 | 0 | 2 | 2 | 1 | 4 | 1 | 2 | 2 | { }v{ } | E8/A4A1A1 = 192*10!/5!/2/2 = 1451520 | ||
D5A2 | 121 | f5 | 16 | 80 | 160 | 80 | 40 | 16 | 10 | 0 | 60480 | * | * | 3 | 0 | 0 | 3 | 0 | {3} | E8/D5A2 = 192*10!/16/5!/3! = 40480 | |
D5A1 | 16 | 80 | 160 | 40 | 80 | 0 | 10 | 16 | * | 181440 | * | 1 | 2 | 0 | 2 | 1 | { }v( ) | E8/D5A1 = 192*10!/16/5!/2 = 181440 | |||
A5A1 | 130 | 6 | 15 | 20 | 0 | 15 | 0 | 0 | 6 | * | * | 483840 | 0 | 2 | 1 | 1 | 2 | E8/A5A1 = 192*10!/6!/2 = 483840 | |||
E6A1 | 122 | f6 | 72 | 720 | 2160 | 1080 | 1080 | 216 | 270 | 216 | 27 | 27 | 0 | 6720 | * | * | 2 | 0 | { } | E8/E6A1 = 192*10!/72/6!/2 = 6720 | |
D6 | 131 | 32 | 240 | 640 | 160 | 480 | 0 | 60 | 192 | 0 | 12 | 32 | * | 30240 | * | 1 | 1 | E8/D6 = 192*10!/32/6! = 30240 | |||
A6A1 | 140 | 7 | 21 | 35 | 0 | 35 | 0 | 0 | 21 | 0 | 0 | 7 | * | * | 69120 | 0 | 2 | E8/A6A1 = 192*10!/7!/2 = 69120 | |||
E7 | 132 | f7 | 576 | 10080 | 40320 | 20160 | 30240 | 4032 | 7560 | 12096 | 756 | 1512 | 2016 | 56 | 126 | 0 | 240 | * | ( ) | E8/E7 = 192*10!/72/8! = 240 | |
D7 | 141 | 64 | 672 | 2240 | 560 | 2240 | 0 | 280 | 1344 | 0 | 84 | 448 | 0 | 14 | 64 | * | 2160 | E8/D7 = 192*10!/64/7! = 2160 |
E8 [30] | E7 [18] | E6 [12] |
---|---|---|
(1) | (1,3,6) | (8,16,24,32,48,64,96) |
[20] | [24] | [6] |
(1,2,3,4,5,6,7,8,10,11,12,14,16,18,19,20) |
Orthographic projections are shown for the sub-symmetries of E8: E7, E6, B8, B7, B6, B5, B4, B3, B2, A7, and A5 Coxeter planes, as well as two more symmetry planes of order 20 and 24. Vertices are shown as circles, colored by their order of overlap in each projective plane.
D3 / B2 / A3 [4] | D4 / B3 / A2 [6] | D5 / B4 [8] |
---|---|---|
(32,160,192,240,480,512,832,960) | (72,216,432,720,864,1080) | (8,16,24,32,48,64,96) |
D6 / B5 / A4 [10] | D7 / B6 [12] | D8 / B7 / A6 [14] |
B8 [16/2] | A5 [6] | A7 [8] |
1k2 figures in n dimensions | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Space | Finite | Euclidean | Hyperbolic | ||||||||
n | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |||
Coxeter group | E3=A2A1 | E4=A4 | E5=D5 | E6 | E7 | E8 | E9 = = E8+ | E10 = = E8++ | |||
Coxeter diagram | |||||||||||
Symmetry (order) | [3−1,2,1] | [30,2,1] | [31,2,1] | [[32,2,1]] | [33,2,1] | [34,2,1] | [35,2,1] | [36,2,1] | |||
Order | 12 | 120 | 1,920 | 103,680 | 2,903,040 | 696,729,600 | ∞ | ||||
Graph | - | - | |||||||||
Name | 1−1,2 | 102 | 112 | 122 | 132 | 142 | 152 | 162 |
Rectified 142 | |
---|---|
Type | Uniform 8-polytope |
Schläfli symbol | t1{3,34,2} |
Coxeter symbol | 0421 |
Coxeter diagrams | |
7-faces | 19680 |
6-faces | 382560 |
5-faces | 2661120 |
4-faces | 9072000 |
Cells | 16934400 |
Faces | 16934400 |
Edges | 7257600 |
Vertices | 483840 |
Vertex figure | {3,3,3}×{3}×{} |
Coxeter group | E8, [34,2,1] |
Properties | convex |
The rectified 142 is named from being a rectification of the 142 polytope, with vertices positioned at the mid-edges of the 142. It can also be called a 0421 polytope with the ring at the center of 3 branches of length 4, 2, and 1.
It is created by a Wythoff construction upon a set of 8 hyperplane mirrors in 8-dimensional space.
The facet information can be extracted from its Coxeter-Dynkin diagram: .
Removing the node on the end of the 1-length branch leaves the birectified 7-simplex,
Removing the node on the end of the 2-length branch leaves the birectified 7-cube, .
Removing the node on the end of the 3-length branch leaves the rectified 132, .
The vertex figure is determined by removing the ringed node and ringing the neighboring node. This makes the 5-cell-triangle duoprism prism, .
Seen in a configuration matrix, the element counts can be derived by mirror removal and ratios of Coxeter group orders. [3]
Configuration matrix | ||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
E8 | k-face | fk | f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7 | k-figure | |||||||||||||||||||||||
A4A2A1 | ( ) | f0 | 483840 | 30 | 30 | 15 | 60 | 10 | 15 | 60 | 30 | 60 | 5 | 20 | 30 | 60 | 30 | 30 | 10 | 20 | 30 | 30 | 15 | 6 | 10 | 10 | 15 | 6 | 3 | 5 | 2 | 3 | {3,3,3}x{3,3}x{} | |
A3A1A1 | { } | f1 | 2 | 7257600 | 2 | 1 | 4 | 1 | 2 | 8 | 4 | 6 | 1 | 4 | 8 | 12 | 6 | 4 | 4 | 6 | 12 | 8 | 4 | 1 | 6 | 4 | 8 | 2 | 1 | 4 | 1 | 2 | ||
A3A2 | {3} | f2 | 3 | 3 | 4838400 | * | * | 1 | 1 | 4 | 0 | 0 | 1 | 4 | 4 | 6 | 0 | 0 | 4 | 6 | 6 | 4 | 0 | 0 | 6 | 4 | 4 | 1 | 0 | 4 | 1 | 1 | ||
A3A2A1 | 3 | 3 | * | 2419200 | * | 0 | 2 | 0 | 4 | 0 | 1 | 0 | 8 | 0 | 6 | 0 | 4 | 0 | 12 | 0 | 4 | 0 | 6 | 0 | 8 | 0 | 1 | 4 | 0 | 2 | ||||
A2A2A1 | 3 | 3 | * | * | 9676800 | 0 | 0 | 2 | 1 | 3 | 0 | 1 | 2 | 6 | 3 | 3 | 1 | 3 | 6 | 6 | 3 | 1 | 3 | 3 | 6 | 2 | 1 | 3 | 1 | 2 | ||||
A3A3 | 0200 | f3 | 4 | 6 | 4 | 0 | 0 | 1209600 | * | * | * | * | 1 | 4 | 0 | 0 | 0 | 0 | 4 | 6 | 0 | 0 | 0 | 0 | 6 | 4 | 0 | 0 | 0 | 4 | 1 | 0 | ||
0110 | 6 | 12 | 4 | 4 | 0 | * | 1209600 | * | * | * | 1 | 0 | 4 | 0 | 0 | 0 | 4 | 0 | 6 | 0 | 0 | 0 | 6 | 0 | 4 | 0 | 0 | 4 | 0 | 1 | ||||
A3A2 | 6 | 12 | 4 | 0 | 4 | * | * | 4838400 | * | * | 0 | 1 | 1 | 3 | 0 | 0 | 1 | 3 | 3 | 3 | 0 | 0 | 3 | 3 | 3 | 1 | 0 | 3 | 1 | 1 | ||||
A3A2A1 | 6 | 12 | 0 | 4 | 4 | * | * | * | 2419200 | * | 0 | 0 | 2 | 0 | 3 | 0 | 1 | 0 | 6 | 0 | 3 | 0 | 3 | 0 | 6 | 0 | 1 | 3 | 0 | 2 | ||||
A3A1A1 | 0200 | 4 | 6 | 0 | 0 | 4 | * | * | * | * | 7257600 | 0 | 0 | 0 | 2 | 1 | 2 | 0 | 1 | 2 | 4 | 2 | 1 | 1 | 2 | 4 | 2 | 1 | 2 | 1 | 2 | |||
A4A3 | 0210 | f4 | 10 | 30 | 20 | 10 | 0 | 5 | 5 | 0 | 0 | 0 | 241920 | * | * | * | * | * | 4 | 0 | 0 | 0 | 0 | 0 | 6 | 0 | 0 | 0 | 0 | 4 | 0 | 0 | ||
A4A2 | 10 | 30 | 20 | 0 | 10 | 5 | 0 | 5 | 0 | 0 | * | 967680 | * | * | * | * | 1 | 3 | 0 | 0 | 0 | 0 | 3 | 3 | 0 | 0 | 0 | 3 | 1 | 0 | ||||
D4A2 | 0111 | 24 | 96 | 32 | 32 | 32 | 0 | 8 | 8 | 8 | 0 | * | * | 604800 | * | * | * | 1 | 0 | 3 | 0 | 0 | 0 | 3 | 0 | 3 | 0 | 0 | 3 | 0 | 1 | |||
A4A1 | 0210 | 10 | 30 | 10 | 0 | 20 | 0 | 0 | 5 | 0 | 5 | * | * | * | 2903040 | * | * | 0 | 1 | 1 | 2 | 0 | 0 | 1 | 2 | 2 | 1 | 0 | 2 | 1 | 1 | |||
A4A1A1 | 10 | 30 | 0 | 10 | 20 | 0 | 0 | 0 | 5 | 5 | * | * | * | * | 1451520 | * | 0 | 0 | 2 | 0 | 2 | 0 | 1 | 0 | 4 | 0 | 1 | 2 | 0 | 2 | ||||
A4A1 | 0300 | 5 | 10 | 0 | 0 | 10 | 0 | 0 | 0 | 0 | 5 | * | * | * | * | * | 2903040 | 0 | 0 | 0 | 2 | 1 | 1 | 0 | 1 | 2 | 2 | 1 | 1 | 1 | 2 | |||
D5A2 | 0211 | f5 | 80 | 480 | 320 | 160 | 160 | 80 | 80 | 80 | 40 | 0 | 16 | 16 | 10 | 0 | 0 | 0 | 60480 | * | * | * | * | * | 3 | 0 | 0 | 0 | 0 | 3 | 0 | 0 | {3} | |
A5A1 | 0220 | 20 | 90 | 60 | 0 | 60 | 15 | 0 | 30 | 0 | 15 | 0 | 6 | 0 | 6 | 0 | 0 | * | 483840 | * | * | * | * | 1 | 2 | 0 | 0 | 0 | 2 | 1 | 0 | { }v() | ||
D5A1 | 0211 | 80 | 480 | 160 | 160 | 320 | 0 | 40 | 80 | 80 | 80 | 0 | 0 | 10 | 16 | 16 | 0 | * | * | 181440 | * | * | * | 1 | 0 | 2 | 0 | 0 | 2 | 0 | 1 | |||
A5 | 0310 | 15 | 60 | 20 | 0 | 60 | 0 | 0 | 15 | 0 | 30 | 0 | 0 | 0 | 6 | 0 | 6 | * | * | * | 967680 | * | * | 0 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | ( )v( )v() | ||
A5A1 | 15 | 60 | 0 | 20 | 60 | 0 | 0 | 0 | 15 | 30 | 0 | 0 | 0 | 0 | 6 | 6 | * | * | * | * | 483840 | * | 0 | 0 | 2 | 0 | 1 | 1 | 0 | 2 | { }v() | |||
0400 | 6 | 15 | 0 | 0 | 20 | 0 | 0 | 0 | 0 | 15 | 0 | 0 | 0 | 0 | 0 | 6 | * | * | * | * | * | 483840 | 0 | 0 | 0 | 2 | 1 | 0 | 1 | 2 | ||||
E6A1 | 0221 | f6 | 720 | 6480 | 4320 | 2160 | 4320 | 1080 | 1080 | 2160 | 1080 | 1080 | 216 | 432 | 270 | 432 | 216 | 0 | 27 | 72 | 27 | 0 | 0 | 0 | 6720 | * | * | * | * | 2 | 0 | 0 | { } | |
A6 | 0320 | 35 | 210 | 140 | 0 | 210 | 35 | 0 | 105 | 0 | 105 | 0 | 21 | 0 | 42 | 0 | 21 | 0 | 7 | 0 | 7 | 0 | 0 | * | 138240 | * | * | * | 1 | 1 | 0 | |||
D6 | 0311 | 240 | 1920 | 640 | 640 | 1920 | 0 | 160 | 480 | 480 | 960 | 0 | 0 | 60 | 192 | 192 | 192 | 0 | 0 | 12 | 32 | 32 | 0 | * | * | 30240 | * | * | 1 | 0 | 1 | |||
A6 | 0410 | 21 | 105 | 35 | 0 | 140 | 0 | 0 | 35 | 0 | 105 | 0 | 0 | 0 | 21 | 0 | 42 | 0 | 0 | 0 | 7 | 0 | 7 | * | * | * | 138240 | * | 0 | 1 | 1 | |||
A6A1 | 21 | 105 | 0 | 35 | 140 | 0 | 0 | 0 | 35 | 105 | 0 | 0 | 0 | 0 | 21 | 42 | 0 | 0 | 0 | 0 | 7 | 7 | * | * | * | * | 69120 | 0 | 0 | 2 | ||||
E7 | 0321 | f7 | 10080 | 120960 | 80640 | 40320 | 120960 | 20160 | 20160 | 60480 | 30240 | 60480 | 4032 | 12096 | 7560 | 24192 | 12096 | 12096 | 756 | 4032 | 1512 | 4032 | 2016 | 0 | 56 | 576 | 126 | 0 | 0 | 240 | * | * | ( ) | |
A7 | 0420 | 56 | 420 | 280 | 0 | 560 | 70 | 0 | 280 | 0 | 420 | 0 | 56 | 0 | 168 | 0 | 168 | 0 | 28 | 0 | 56 | 0 | 28 | 0 | 8 | 0 | 8 | 0 | * | 17280 | * | |||
D7 | 0411 | 672 | 6720 | 2240 | 2240 | 8960 | 0 | 560 | 2240 | 2240 | 6720 | 0 | 0 | 280 | 1344 | 1344 | 2688 | 0 | 0 | 84 | 448 | 448 | 448 | 0 | 0 | 14 | 64 | 64 | * | * | 2160 |
Orthographic projections are shown for the sub-symmetries of B6, B5, B4, B3, B2, A7, and A5 Coxeter planes. Vertices are shown as circles, colored by their order of overlap in each projective plane.
(Planes for E8: E7, E6, B8, B7, [24] are not shown for being too large to display.)
D3 / B2 / A3 [4] | D4 / B3 / A2 [6] | D5 / B4 [8] |
---|---|---|
D6 / B5 / A4 [10] | D7 / B6 [12] | [6] |
A5 [6] | A7 [8] | [20] |
In geometry, the Gosset–Elte figures, named by Coxeter after Thorold Gosset and E. L. Elte, are a group of uniform polytopes which are not regular, generated by a Wythoff construction with mirrors all related by order-2 and order-3 dihedral angles. They can be seen as one-end-ringed Coxeter–Dynkin diagrams.
In five-dimensional geometry, a rectified 5-simplex is a convex uniform 5-polytope, being a rectification of the regular 5-simplex.
In 7-dimensional geometry, 231 is a uniform polytope, constructed from the E7 group.
In 6-dimensional geometry, the 122 polytope is a uniform polytope, constructed from the E6 group. It was first published in E. L. Elte's 1912 listing of semiregular polytopes, named as V72 (for its 72 vertices).
In 7-dimensional geometry, 132 is a uniform polytope, constructed from the E7 group.
In 8-dimensional geometry, the 241 is a uniform 8-polytope, constructed within the symmetry of the E8 group.
In 6-dimensional geometry, the 221 polytope is a uniform 6-polytope, constructed within the symmetry of the E6 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 6-ic semi-regular figure. It is also called the Schläfli polytope.
In 7-dimensional geometry, the 321 polytope is a uniform 7-polytope, constructed within the symmetry of the E7 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 7-ic semi-regular figure.
In 8-dimensional geometry, the 421 is a semiregular uniform 8-polytope, constructed within the symmetry of the E8 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 8-ic semi-regular figure.
In geometry, the 152 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. It contains 142 and 151 facets, in a birectified 8-simplex vertex figure. It is the final figure in the 1k2 polytope family.
In geometry, the 222 honeycomb is a uniform tessellation of the six-dimensional Euclidean space. It can be represented by the Schläfli symbol {3,3,32,2}. It is constructed from 221 facets and has a 122 vertex figure, with 54 221 polytopes around every vertex.
In 7-dimensional geometry, the 331 honeycomb is a uniform honeycomb, also given by Schläfli symbol {3,3,3,33,1} and is composed of 321 and 7-simplex facets, with 56 and 576 of them respectively around each vertex.
In 7-dimensional geometry, 133 is a uniform honeycomb, also given by Schläfli symbol {3,33,3}, and is composed of 132 facets.
In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a rectification of the regular 6-simplex.
In geometry, the 521 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. The symbol 521 is from Coxeter, named for the length of the 3 branches of its Coxeter-Dynkin diagram.
In seven-dimensional geometry, a rectified 7-simplex is a convex uniform 7-polytope, being a rectification of the regular 7-simplex.
In eight-dimensional geometry, a rectified 8-simplex is a convex uniform 8-polytope, being a rectification of the regular 8-simplex.
In nine-dimensional geometry, a rectified 9-simplex is a convex uniform 9-polytope, being a rectification of the regular 9-simplex.
In geometry, an E9 honeycomb is a tessellation of uniform polytopes in hyperbolic 9-dimensional space. , also (E10) is a paracompact hyperbolic group, so either facets or vertex figures will not be bounded.
In eighth-dimensional Euclidean geometry, the 8-simplex honeycomb is a space-filling tessellation. The tessellation fills space by 8-simplex, rectified 8-simplex, birectified 8-simplex, and trirectified 8-simplex facets. These facet types occur in proportions of 1:1:1:1 respectively in the whole honeycomb.