In nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets. Each 7-polytope ridge being shared by exactly two 8-polytope facets.
A uniform 9-polytope is one which is vertex-transitive, and constructed from uniform 8-polytope facets.
Regular 9-polytopes can be represented by the Schläfli symbol {p,q,r,s,t,u,v,w}, with w {p,q,r,s,t,u,v} 8-polytope facets around each peak.
There are exactly three such convex regular 9-polytopes:
There are no nonconvex regular 9-polytopes.
The topology of any given 9-polytope is defined by its Betti numbers and torsion coefficients. [1]
The value of the Euler characteristic used to characterise polyhedra does not generalize usefully to higher dimensions, whatever their underlying topology. This inadequacy of the Euler characteristic to reliably distinguish between different topologies in higher dimensions led to the discovery of the more sophisticated Betti numbers. [1]
Similarly, the notion of orientability of a polyhedron is insufficient to characterise the surface twistings of toroidal polytopes, and this led to the use of torsion coefficients. [1]
Uniform 9-polytopes with reflective symmetry can be generated by these three Coxeter groups, represented by permutations of rings of the Coxeter-Dynkin diagrams:
Coxeter group | Coxeter-Dynkin diagram | |
---|---|---|
A9 | [38] | |
B9 | [4,37] | |
D9 | [36,1,1] |
Selected regular and uniform 9-polytopes from each family include:
The A9 family has symmetry of order 3628800 (10 factorial).
There are 256+16-1=271 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings. These are all enumerated below. Bowers-style acronym names are given in parentheses for cross-referencing.
# | Graph | Coxeter-Dynkin diagram Schläfli symbol Name | Element counts | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
8-faces | 7-faces | 6-faces | 5-faces | 4-faces | Cells | Faces | Edges | Vertices | |||
1 |
| 10 | 45 | 120 | 210 | 252 | 210 | 120 | 45 | 10 | |
2 |
| 360 | 45 | ||||||||
3 |
| 1260 | 120 | ||||||||
4 |
| 2520 | 210 | ||||||||
5 |
| 3150 | 252 | ||||||||
6 |
| 405 | 90 | ||||||||
7 |
| 2880 | 360 | ||||||||
8 |
| 1620 | 360 | ||||||||
9 |
| 8820 | 840 | ||||||||
10 |
| 10080 | 1260 | ||||||||
11 |
| 3780 | 840 | ||||||||
12 |
| 15120 | 1260 | ||||||||
13 |
| 26460 | 2520 | ||||||||
14 |
| 20160 | 2520 | ||||||||
15 |
| 5670 | 1260 | ||||||||
16 |
| 15750 | 1260 | ||||||||
17 |
| 37800 | 3150 | ||||||||
18 |
| 44100 | 4200 | ||||||||
19 |
| 25200 | 3150 | ||||||||
20 |
| 10080 | 840 | ||||||||
21 |
| 31500 | 2520 | ||||||||
22 |
| 50400 | 4200 | ||||||||
23 |
| 3780 | 360 | ||||||||
24 |
| 15120 | 1260 | ||||||||
25 |
| 720 | 90 | ||||||||
26 |
| 3240 | 720 | ||||||||
27 |
| 18900 | 2520 | ||||||||
28 |
| 12600 | 2520 | ||||||||
29 |
| 11340 | 2520 | ||||||||
30 |
| 47880 | 5040 | ||||||||
31 |
| 60480 | 7560 | ||||||||
32 |
| 52920 | 7560 | ||||||||
33 |
| 27720 | 5040 | ||||||||
34 |
| 41580 | 7560 | ||||||||
35 |
| 22680 | 5040 | ||||||||
36 |
| 66150 | 6300 | ||||||||
37 |
| 126000 | 12600 | ||||||||
38 |
| 107100 | 12600 | ||||||||
39 |
| 107100 | 12600 | ||||||||
40 |
| 151200 | 18900 | ||||||||
41 |
| 81900 | 12600 | ||||||||
42 |
| 37800 | 6300 | ||||||||
43 |
| 81900 | 12600 | ||||||||
44 |
| 75600 | 12600 | ||||||||
45 |
| 28350 | 6300 | ||||||||
46 |
| 52920 | 5040 | ||||||||
47 |
| 138600 | 12600 | ||||||||
48 |
| 113400 | 12600 | ||||||||
49 |
| 176400 | 16800 | ||||||||
50 |
| 239400 | 25200 | ||||||||
51 |
| 126000 | 16800 | ||||||||
52 |
| 113400 | 12600 | ||||||||
53 |
| 226800 | 25200 | ||||||||
54 |
| 201600 | 25200 | ||||||||
55 |
| 32760 | 5040 | ||||||||
56 |
| 94500 | 12600 | ||||||||
57 |
| 23940 | 2520 | ||||||||
58 |
| 83160 | 7560 | ||||||||
59 |
| 64260 | 7560 | ||||||||
60 |
| 144900 | 12600 | ||||||||
61 |
| 189000 | 18900 | ||||||||
62 |
| 138600 | 12600 | ||||||||
63 |
| 264600 | 25200 | ||||||||
64 |
| 71820 | 7560 | ||||||||
65 |
| 17640 | 2520 | ||||||||
66 |
| 5400 | 720 | ||||||||
67 |
| 25200 | 2520 | ||||||||
68 |
| 57960 | 5040 | ||||||||
69 |
| 75600 | 6300 | ||||||||
70 |
| 22680 | 5040 | ||||||||
71 |
| 105840 | 15120 | ||||||||
72 |
| 75600 | 15120 | ||||||||
73 |
| 75600 | 15120 | ||||||||
74 |
| 68040 | 15120 | ||||||||
75 |
| 214200 | 25200 | ||||||||
76 |
| 283500 | 37800 | ||||||||
77 |
| 264600 | 37800 | ||||||||
78 |
| 245700 | 37800 | ||||||||
79 |
| 138600 | 25200 | ||||||||
80 |
| 226800 | 37800 | ||||||||
81 |
| 189000 | 37800 | ||||||||
82 |
| 138600 | 25200 | ||||||||
83 |
| 207900 | 37800 | ||||||||
84 |
| 113400 | 25200 | ||||||||
85 |
| 226800 | 25200 | ||||||||
86 |
| 453600 | 50400 | ||||||||
87 |
| 403200 | 50400 | ||||||||
88 |
| 378000 | 50400 | ||||||||
89 |
| 403200 | 50400 | ||||||||
90 |
| 604800 | 75600 | ||||||||
91 |
| 529200 | 75600 | ||||||||
92 |
| 352800 | 50400 | ||||||||
93 |
| 529200 | 75600 | ||||||||
94 |
| 302400 | 50400 | ||||||||
95 |
| 151200 | 25200 | ||||||||
96 |
| 352800 | 50400 | ||||||||
97 |
| 277200 | 50400 | ||||||||
98 |
| 352800 | 50400 | ||||||||
99 |
| 491400 | 75600 | ||||||||
100 |
| 252000 | 50400 | ||||||||
101 |
| 151200 | 25200 | ||||||||
102 |
| 327600 | 50400 | ||||||||
103 |
| 128520 | 15120 | ||||||||
104 |
| 359100 | 37800 | ||||||||
105 |
| 302400 | 37800 | ||||||||
106 |
| 283500 | 37800 | ||||||||
107 |
| 478800 | 50400 | ||||||||
108 |
| 680400 | 75600 | ||||||||
109 |
| 604800 | 75600 | ||||||||
110 |
| 378000 | 50400 | ||||||||
111 |
| 567000 | 75600 | ||||||||
112 |
| 321300 | 37800 | ||||||||
113 |
| 680400 | 75600 | ||||||||
114 |
| 567000 | 75600 | ||||||||
115 |
| 642600 | 75600 | ||||||||
116 |
| 907200 | 113400 | ||||||||
117 |
| 264600 | 37800 | ||||||||
118 |
| 98280 | 15120 | ||||||||
119 |
| 302400 | 37800 | ||||||||
120 |
| 226800 | 37800 | ||||||||
121 |
| 428400 | 50400 | ||||||||
122 |
| 302400 | 37800 | ||||||||
123 |
| 98280 | 15120 | ||||||||
124 |
| 35280 | 5040 | ||||||||
125 |
| 136080 | 15120 | ||||||||
126 |
| 105840 | 15120 | ||||||||
127 |
| 252000 | 25200 | ||||||||
128 |
| 340200 | 37800 | ||||||||
129 |
| 176400 | 25200 | ||||||||
130 |
| 252000 | 25200 | ||||||||
131 |
| 504000 | 50400 | ||||||||
132 |
| 453600 | 50400 | ||||||||
133 |
| 136080 | 15120 | ||||||||
134 |
| 378000 | 37800 | ||||||||
135 |
| 35280 | 5040 | ||||||||
136 |
| 136080 | 30240 | ||||||||
137 |
| 491400 | 75600 | ||||||||
138 |
| 378000 | 75600 | ||||||||
139 |
| 378000 | 75600 | ||||||||
140 |
| 378000 | 75600 | ||||||||
141 |
| 340200 | 75600 | ||||||||
142 |
| 756000 | 100800 | ||||||||
143 |
| 1058400 | 151200 | ||||||||
144 |
| 982800 | 151200 | ||||||||
145 |
| 982800 | 151200 | ||||||||
146 |
| 907200 | 151200 | ||||||||
147 |
| 554400 | 100800 | ||||||||
148 |
| 907200 | 151200 | ||||||||
149 |
| 831600 | 151200 | ||||||||
150 |
| 756000 | 151200 | ||||||||
151 |
| 554400 | 100800 | ||||||||
152 |
| 907200 | 151200 | ||||||||
153 |
| 756000 | 151200 | ||||||||
154 |
| 554400 | 100800 | ||||||||
155 |
| 831600 | 151200 | ||||||||
156 |
| 453600 | 100800 | ||||||||
157 |
| 567000 | 75600 | ||||||||
158 |
| 1209600 | 151200 | ||||||||
159 |
| 1058400 | 151200 | ||||||||
160 |
| 1058400 | 151200 | ||||||||
161 |
| 982800 | 151200 | ||||||||
162 |
| 1134000 | 151200 | ||||||||
163 |
| 1701000 | 226800 | ||||||||
164 |
| 1587600 | 226800 | ||||||||
165 |
| 1474200 | 226800 | ||||||||
166 |
| 982800 | 151200 | ||||||||
167 |
| 1587600 | 226800 | ||||||||
168 |
| 1360800 | 226800 | ||||||||
169 |
| 982800 | 151200 | ||||||||
170 |
| 1474200 | 226800 | ||||||||
171 |
| 453600 | 75600 | ||||||||
172 |
| 1058400 | 151200 | ||||||||
173 |
| 907200 | 151200 | ||||||||
174 |
| 831600 | 151200 | ||||||||
175 |
| 1058400 | 151200 | ||||||||
176 |
| 1587600 | 226800 | ||||||||
177 |
| 1360800 | 226800 | ||||||||
178 |
| 907200 | 151200 | ||||||||
179 |
| 453600 | 75600 | ||||||||
180 |
| 1058400 | 151200 | ||||||||
181 |
| 1058400 | 151200 | ||||||||
182 |
| 453600 | 75600 | ||||||||
183 |
| 196560 | 30240 | ||||||||
184 |
| 604800 | 75600 | ||||||||
185 |
| 491400 | 75600 | ||||||||
186 |
| 491400 | 75600 | ||||||||
187 |
| 856800 | 100800 | ||||||||
188 |
| 1209600 | 151200 | ||||||||
189 |
| 1134000 | 151200 | ||||||||
190 |
| 655200 | 100800 | ||||||||
191 |
| 1058400 | 151200 | ||||||||
192 |
| 655200 | 100800 | ||||||||
193 |
| 604800 | 75600 | ||||||||
194 |
| 1285200 | 151200 | ||||||||
195 |
| 1134000 | 151200 | ||||||||
196 |
| 1209600 | 151200 | ||||||||
197 |
| 1814400 | 226800 | ||||||||
198 |
| 491400 | 75600 | ||||||||
199 |
| 196560 | 30240 | ||||||||
200 |
| 604800 | 75600 | ||||||||
201 |
| 856800 | 100800 | ||||||||
202 |
| 680400 | 151200 | ||||||||
203 |
| 1814400 | 302400 | ||||||||
204 |
| 1512000 | 302400 | ||||||||
205 |
| 1512000 | 302400 | ||||||||
206 |
| 1512000 | 302400 | ||||||||
207 |
| 1512000 | 302400 | ||||||||
208 |
| 1360800 | 302400 | ||||||||
209 |
| 1965600 | 302400 | ||||||||
210 |
| 2948400 | 453600 | ||||||||
211 |
| 2721600 | 453600 | ||||||||
212 |
| 2721600 | 453600 | ||||||||
213 |
| 2721600 | 453600 | ||||||||
214 |
| 2494800 | 453600 | ||||||||
215 |
| 1663200 | 302400 | ||||||||
216 |
| 2721600 | 453600 | ||||||||
217 |
| 2494800 | 453600 | ||||||||
218 |
| 2494800 | 453600 | ||||||||
219 |
| 2268000 | 453600 | ||||||||
220 |
| 1663200 | 302400 | ||||||||
221 |
| 2721600 | 453600 | ||||||||
222 |
| 2494800 | 453600 | ||||||||
223 |
| 2268000 | 453600 | ||||||||
224 |
| 1663200 | 302400 | ||||||||
225 |
| 2721600 | 453600 | ||||||||
226 |
| 1663200 | 302400 | ||||||||
227 |
| 907200 | 151200 | ||||||||
228 |
| 2116800 | 302400 | ||||||||
229 |
| 1814400 | 302400 | ||||||||
230 |
| 1814400 | 302400 | ||||||||
231 |
| 1814400 | 302400 | ||||||||
232 |
| 2116800 | 302400 | ||||||||
233 |
| 3175200 | 453600 | ||||||||
234 |
| 2948400 | 453600 | ||||||||
235 |
| 2948400 | 453600 | ||||||||
236 |
| 1814400 | 302400 | ||||||||
237 |
| 2948400 | 453600 | ||||||||
238 |
| 2721600 | 453600 | ||||||||
239 |
| 1814400 | 302400 | ||||||||
240 |
| 907200 | 151200 | ||||||||
241 |
| 2116800 | 302400 | ||||||||
242 |
| 1814400 | 302400 | ||||||||
243 |
| 2116800 | 302400 | ||||||||
244 |
| 3175200 | 453600 | ||||||||
245 |
| 907200 | 151200 | ||||||||
246 |
| 2721600 | 604800 | ||||||||
247 |
| 4989600 | 907200 | ||||||||
248 |
| 4536000 | 907200 | ||||||||
249 |
| 4536000 | 907200 | ||||||||
250 |
| 4536000 | 907200 | ||||||||
251 |
| 4536000 | 907200 | ||||||||
252 |
| 4536000 | 907200 | ||||||||
253 |
| 4082400 | 907200 | ||||||||
254 |
| 3326400 | 604800 | ||||||||
255 |
| 5443200 | 907200 | ||||||||
256 |
| 4989600 | 907200 | ||||||||
257 |
| 4989600 | 907200 | ||||||||
258 |
| 4989600 | 907200 | ||||||||
259 |
| 4989600 | 907200 | ||||||||
260 |
| 3326400 | 604800 | ||||||||
261 |
| 5443200 | 907200 | ||||||||
262 |
| 4989600 | 907200 | ||||||||
263 |
| 4989600 | 907200 | ||||||||
264 |
| 3326400 | 604800 | ||||||||
265 |
| 5443200 | 907200 | ||||||||
266 |
| 8164800 | 1814400 | ||||||||
267 |
| 9072000 | 1814400 | ||||||||
268 |
| 9072000 | 1814400 | ||||||||
269 |
| 9072000 | 1814400 | ||||||||
270 |
| 9072000 | 1814400 | ||||||||
271 |
| 16329600 | 3628800 |
There are 511 forms based on all permutations of the Coxeter-Dynkin diagrams with one or more rings.
Eleven cases are shown below: Nine rectified forms and 2 truncations. Bowers-style acronym names are given in parentheses for cross-referencing. Bowers-style acronym names are given in parentheses for cross-referencing.
# | Graph | Coxeter-Dynkin diagram Schläfli symbol Name | Element counts | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
8-faces | 7-faces | 6-faces | 5-faces | 4-faces | Cells | Faces | Edges | Vertices | ||||
1 | t0{4,3,3,3,3,3,3,3} 9-cube (enne) | 18 | 144 | 672 | 2016 | 4032 | 5376 | 4608 | 2304 | 512 | ||
2 | t0,1{4,3,3,3,3,3,3,3} Truncated 9-cube (ten) | 2304 | 4608 | |||||||||
3 | t1{4,3,3,3,3,3,3,3} Rectified 9-cube (ren) | 18432 | 2304 | |||||||||
4 | t2{4,3,3,3,3,3,3,3} Birectified 9-cube (barn) | 64512 | 4608 | |||||||||
5 | t3{4,3,3,3,3,3,3,3} Trirectified 9-cube (tarn) | 96768 | 5376 | |||||||||
6 | t4{4,3,3,3,3,3,3,3} Quadrirectified 9-cube (nav) (Quadrirectified 9-orthoplex) | 80640 | 4032 | |||||||||
7 | t3{3,3,3,3,3,3,3,4} Trirectified 9-orthoplex (tarv) | 40320 | 2016 | |||||||||
8 | t2{3,3,3,3,3,3,3,4} Birectified 9-orthoplex (brav) | 12096 | 672 | |||||||||
9 | t1{3,3,3,3,3,3,3,4} Rectified 9-orthoplex (riv) | 2016 | 144 | |||||||||
10 | t0,1{3,3,3,3,3,3,3,4} Truncated 9-orthoplex (tiv) | 2160 | 288 | |||||||||
11 | t0{3,3,3,3,3,3,3,4} 9-orthoplex (vee) | 512 | 2304 | 4608 | 5376 | 4032 | 2016 | 672 | 144 | 18 |
The D9 family has symmetry of order 92,897,280 (9 factorial × 28).
This family has 3×128−1=383 Wythoffian uniform polytopes, generated by marking one or more nodes of the D9 Coxeter-Dynkin diagram. Of these, 255 (2×128−1) are repeated from the B9 family and 128 are unique to this family, with the eight 1 or 2 ringed forms listed below. Bowers-style acronym names are given in parentheses for cross-referencing.
# | Coxeter plane graphs | Coxeter-Dynkin diagram Schläfli symbol | Base point (Alternately signed) | Element counts | Circumrad | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
B9 | D9 | D8 | D7 | D6 | D5 | D4 | D3 | A7 | A5 | A3 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | ||||
1 | 9-demicube (henne) | (1,1,1,1,1,1,1,1,1) | 274 | 2448 | 9888 | 23520 | 36288 | 37632 | 21404 | 4608 | 256 | 1.0606601 | |||||||||||
2 | Truncated 9-demicube (thenne) | (1,1,3,3,3,3,3,3,3) | 69120 | 9216 | 2.8504384 | ||||||||||||||||||
3 | Cantellated 9-demicube | (1,1,1,3,3,3,3,3,3) | 225792 | 21504 | 2.6692696 | ||||||||||||||||||
4 | Runcinated 9-demicube | (1,1,1,1,3,3,3,3,3) | 419328 | 32256 | 2.4748735 | ||||||||||||||||||
5 | Stericated 9-demicube | (1,1,1,1,1,3,3,3,3) | 483840 | 32256 | 2.2638462 | ||||||||||||||||||
6 | Pentellated 9-demicube | (1,1,1,1,1,1,3,3,3) | 354816 | 21504 | 2.0310094 | ||||||||||||||||||
7 | Hexicated 9-demicube | (1,1,1,1,1,1,1,3,3) | 161280 | 9216 | 1.7677668 | ||||||||||||||||||
8 | Heptellated 9-demicube | (1,1,1,1,1,1,1,1,3) | 41472 | 2304 | 1.4577379 |
There are five fundamental affine Coxeter groups that generate regular and uniform tessellations in 8-space:
# | Coxeter group | Coxeter diagram | Forms | |
---|---|---|---|---|
1 | [3[9]] | 45 | ||
2 | [4,36,4] | 271 | ||
3 | h[4,36,4] [4,35,31,1] | 383 (128 new) | ||
4 | q[4,36,4] [31,1,34,31,1] | 155 (15 new) | ||
5 | [35,2,1] | 511 |
Regular and uniform tessellations include:
There are no compact hyperbolic Coxeter groups of rank 9, groups that can generate honeycombs with all finite facets, and a finite vertex figure. However, there are 4 paracompact hyperbolic Coxeter groups of rank 9, each generating uniform honeycombs in 8-space as permutations of rings of the Coxeter diagrams.
= [3,3[8]]: | = [31,1,33,32,1]: | = [4,34,32,1]: | = [34,3,1]: |
In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets.
In seven-dimensional geometry, a 7-polytope is a polytope contained by 6-polytope facets. Each 5-polytope ridge being shared by exactly two 6-polytope facets.
In six-dimensional geometry, a uniform 6-polytope is a six-dimensional uniform polytope. A uniform polypeton is vertex-transitive, and all facets are uniform 5-polytopes.
The 5-demicube honeycomb is a uniform space-filling tessellation in Euclidean 5-space. It is constructed as an alternation of the regular 5-cube honeycomb.
In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.
In ten-dimensional geometry, a 10-polytope is a 10-dimensional polytope whose boundary consists of 9-polytope facets, exactly two such facets meeting at each 8-polytope ridge.
In 6-dimensional geometry, the 122 polytope is a uniform polytope, constructed from the E6 group. It was first published in E. L. Elte's 1912 listing of semiregular polytopes, named as V72 (for its 72 vertices).
In 8-dimensional geometry, the 241 is a uniform 8-polytope, constructed within the symmetry of the E8 group.
In 6-dimensional geometry, the 221 polytope is a uniform 6-polytope, constructed within the symmetry of the E6 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 6-ic semi-regular figure. It is also called the Schläfli polytope.
In 7-dimensional geometry, the 321 polytope is a uniform 7-polytope, constructed within the symmetry of the E7 group. It was discovered by Thorold Gosset, published in his 1900 paper. He called it an 7-ic semi-regular figure.
In five-dimensional geometry, a stericated 5-simplex is a convex uniform 5-polytope with fourth-order truncations (sterication) of the regular 5-simplex.
In six-dimensional geometry, a pentellated 6-simplex is a convex uniform 6-polytope with 5th order truncations of the regular 6-simplex.
In six-dimensional geometry, a rectified 6-simplex is a convex uniform 6-polytope, being a rectification of the regular 6-simplex.
In six-dimensional geometry, a truncated 6-simplex is a convex uniform 6-polytope, being a truncation of the regular 6-simplex.
In seven-dimensional geometry, a rectified 7-simplex is a convex uniform 7-polytope, being a rectification of the regular 7-simplex.
In six-dimensional geometry, a runcinated 6-simplex is a convex uniform 6-polytope constructed as a runcination of the regular 6-simplex.
In seven-dimensional geometry, a hexicated 7-simplex is a convex uniform 7-polytope, including 6th-order truncations (hexication) from the regular 7-simplex.
In eight-dimensional geometry, a heptellated 8-simplex is a convex uniform 8-polytope, including 7th-order truncations (heptellation) from the regular 8-simplex.
In nine-dimensional geometry, a rectified 9-simplex is a convex uniform 9-polytope, being a rectification of the regular 9-orthoplex.
In geometry, an E9 honeycomb is a tessellation of uniform polytopes in hyperbolic 9-dimensional space. , also (E10) is a paracompact hyperbolic group, so either facets or vertex figures will not be bounded.
Space | Family | / / | ||||
---|---|---|---|---|---|---|
E2 | Uniform tiling | {3[3]} | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | {3[4]} | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | {3[5]} | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | {3[6]} | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | {3[7]} | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | {3[8]} | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | {3[9]} | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | {3[10]} | δ10 | hδ10 | qδ10 | |
E10 | Uniform 10-honeycomb | {3[11]} | δ11 | hδ11 | qδ11 | |
En-1 | Uniform (n-1)-honeycomb | {3[n]} | δn | hδn | qδn | 1k2 • 2k1 • k21 |