6-simplex honeycomb | |
---|---|
(No image) | |
Type | Uniform 6-honeycomb |
Family | Simplectic honeycomb |
Schläfli symbol | {3[7]} = 0[7] |
Coxeter diagram | |
6-face types | {35} , t1{35} t2{35} |
5-face types | {34} , t1{34} t2{34} |
4-face types | {33} , t1{33} |
Cell types | {3,3} , t1{3,3} |
Face types | {3} |
Vertex figure | t0,5{35} |
Symmetry | ×2, [[3[7]]] |
Properties | vertex-transitive |
In six-dimensional Euclidean geometry, the 6-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 6-simplex, rectified 6-simplex, and birectified 6-simplex facets. These facet types occur in proportions of 1:1:1 respectively in the whole honeycomb.
This vertex arrangement is called the A6 lattice or 6-simplex lattice. The 42 vertices of the expanded 6-simplex vertex figure represent the 42 roots of the Coxeter group. [1] It is the 6-dimensional case of a simplectic honeycomb. Around each vertex figure are 126 facets: 7+7 6-simplex, 21+21 rectified 6-simplex, 35+35 birectified 6-simplex, with the count distribution from the 8th row of Pascal's triangle.
The A*
6 lattice (also called A7
6) is the union of seven A6 lattices, and has the vertex arrangement of the dual to the omnitruncated 6-simplex honeycomb, and therefore the Voronoi cell of this lattice is the omnitruncated 6-simplex.
∪ ∪ ∪ ∪ ∪ ∪ = dual of
This honeycomb is one of 17 unique uniform honeycombs [2] constructed by the Coxeter group, grouped by their extended symmetry of the Coxeter–Dynkin diagrams:
A6 honeycombs | ||||
---|---|---|---|---|
Heptagon symmetry | Extended symmetry | Extended diagram | Extended group | Honeycombs |
a1 | [3[7]] | |||
i2 | [[3[7]]] | ×2 | ||
r14 | [7[3[7]]] | ×14 |
The 6-simplex honeycomb can be projected into the 3-dimensional cubic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:
Regular and uniform honeycombs in 6-space:
In geometry, the 5-cubic honeycomb or penteractic honeycomb is the only regular space-filling tessellation in Euclidean 5-space. Four 5-cubes meet at each cubic cell, and it is more explicitly called an order-4 penteractic honeycomb.
The 5-demicube honeycomb is a uniform space-filling tessellation in Euclidean 5-space. It is constructed as an alternation of the regular 5-cube honeycomb.
The 6-demicubic honeycomb or demihexeractic honeycomb is a uniform space-filling tessellation in Euclidean 6-space. It is constructed as an alternation of the regular 6-cube honeycomb.
The 8-demicubic honeycomb, or demiocteractic honeycomb is a uniform space-filling tessellation in Euclidean 8-space. It is constructed as an alternation of the regular 8-cubic honeycomb.
In geometry, the 222 honeycomb is a uniform tessellation of the six-dimensional Euclidean space. It can be represented by the Schläfli symbol {3,3,32,2}. It is constructed from 221 facets and has a 122 vertex figure, with 54 221 polytopes around every vertex.
In 7-dimensional geometry, the 331 honeycomb is a uniform honeycomb, also given by Schläfli symbol {3,3,3,33,1} and is composed of 321 and 7-simplex facets, with 56 and 576 of them respectively around each vertex.
In four-dimensional Euclidean geometry, the 4-simplex honeycomb, 5-cell honeycomb or pentachoric-dispentachoric honeycomb is a space-filling tessellation honeycomb. It is composed of 5-cells and rectified 5-cells facets in a ratio of 1:1.
In five-dimensional Euclidean geometry, the 5-simplex honeycomb or hexateric honeycomb is a space-filling tessellation. Each vertex is shared by 12 5-simplexes, 30 rectified 5-simplexes, and 20 birectified 5-simplexes. These facet types occur in proportions of 2:2:1 respectively in the whole honeycomb.
In five-dimensional Euclidean geometry, the cyclotruncated 5-simplex honeycomb or cyclotruncated hexateric honeycomb is a space-filling tessellation. It is composed of 5-simplex, truncated 5-simplex, and bitruncated 5-simplex facets in a ratio of 1:1:1.
In five-dimensional Euclidean geometry, the omnitruncated 5-simplex honeycomb or omnitruncated hexateric honeycomb is a space-filling tessellation. It is composed entirely of omnitruncated 5-simplex facets.
In geometry an omnitruncated simplicial honeycomb or omnitruncated n-simplex honeycomb is an n-dimensional uniform tessellation, based on the symmetry of the affine Coxeter group. Each is composed of omnitruncated simplex facets. The vertex figure for each is an irregular n-simplex.
In geometry, the simplicial honeycomb is a dimensional infinite series of honeycombs, based on the affine Coxeter group symmetry. It is represented by a Coxeter-Dynkin diagram as a cyclic graph of n + 1 nodes with one node ringed. It is composed of n-simplex facets, along with all rectified n-simplices. It can be thought of as an n-dimensional hypercubic honeycomb that has been subdivided along all hyperplanes , then stretched along its main diagonal until the simplices on the ends of the hypercubes become regular. The vertex figure of an n-simplex honeycomb is an expanded n-simplex.
In geometry, the cyclotruncated simplicial honeycomb is a dimensional infinite series of honeycombs, based on the symmetry of the affine Coxeter group. It is given a Schläfli symbol t0,1{3[n+1]}, and is represented by a Coxeter-Dynkin diagram as a cyclic graph of n+1 nodes with two adjacent nodes ringed. It is composed of n-simplex facets, along with all truncated n-simplices.
In seven-dimensional Euclidean geometry, the 7-simplex honeycomb is a space-filling tessellation. The tessellation fills space by 7-simplex, rectified 7-simplex, birectified 7-simplex, and trirectified 7-simplex facets. These facet types occur in proportions of 2:2:2:1 respectively in the whole honeycomb.
In eighth-dimensional Euclidean geometry, the 8-simplex honeycomb is a space-filling tessellation. The tessellation fills space by 8-simplex, rectified 8-simplex, birectified 8-simplex, and trirectified 8-simplex facets. These facet types occur in proportions of 1:1:1:1 respectively in the whole honeycomb.
In six-dimensional Euclidean geometry, the omnitruncated 6-simplex honeycomb is a space-filling tessellation. It is composed entirely of omnitruncated 6-simplex facets.
In eight-dimensional Euclidean geometry, the omnitruncated 8-simplex honeycomb is a space-filling tessellation. It is composed entirely of omnitruncated 8-simplex facets.
In seven-dimensional Euclidean geometry, the omnitruncated 7-simplex honeycomb is a space-filling tessellation. It is composed entirely of omnitruncated 7-simplex facets.
In six-dimensional Euclidean geometry, the cyclotruncated 6-simplex honeycomb is a space-filling tessellation. The tessellation fills space by 6-simplex, truncated 6-simplex, bitruncated 6-simplex, and tritruncated 6-simplex facets. These facet types occur in proportions of 2:2:2:1 respectively in the whole honeycomb.
In seven-dimensional Euclidean geometry, the cyclotruncated 7-simplex honeycomb is a space-filling tessellation. The tessellation fills space by 7-simplex, truncated 7-simplex, bitruncated 7-simplex, and tritruncated 7-simplex facets. These facet types occur in proportions of 1:1:1:1 respectively in the whole honeycomb.
Space | Family | / / | ||||
---|---|---|---|---|---|---|
E2 | Uniform tiling | 0[3] | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | 0[4] | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | 0[5] | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | 0[6] | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | 0[7] | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | 0[8] | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | 0[9] | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | 0[10] | δ10 | hδ10 | qδ10 | |
E10 | Uniform 10-honeycomb | 0[11] | δ11 | hδ11 | qδ11 | |
En-1 | Uniform (n-1)-honeycomb | 0[n] | δn | hδn | qδn | 1k2 • 2k1 • k21 |