6-simplex honeycomb

Last updated
6-simplex honeycomb
(No image)
Type Uniform 6-honeycomb
Family Simplectic honeycomb
Schläfli symbol {3[7]} = 0[7]
Coxeter diagram CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
6-face types {35} 6-simplex t0.svg , t1{35} 6-simplex t1.svg
t2{35} 6-simplex t2.svg
5-face types {34} 5-simplex t0.svg , t1{34} 5-simplex t1.svg
t2{34} 5-simplex t2.svg
4-face types {33} 4-simplex t0.svg , t1{33} 4-simplex t1.svg
Cell types {3,3} 3-simplex t0.svg , t1{3,3} 3-simplex t1.svg
Face types {3} 2-simplex t0.svg
Vertex figure t0,5{35} 6-simplex t05.svg
Symmetry ×2, [[3[7]]]
Properties vertex-transitive

In six-dimensional Euclidean geometry, the 6-simplex honeycomb is a space-filling tessellation (or honeycomb). The tessellation fills space by 6-simplex, rectified 6-simplex, and birectified 6-simplex facets. These facet types occur in proportions of 1:1:1 respectively in the whole honeycomb.

Contents

A6 lattice

This vertex arrangement is called the A6 lattice or 6-simplex lattice. The 42 vertices of the expanded 6-simplex vertex figure represent the 42 roots of the Coxeter group. [1] It is the 6-dimensional case of a simplectic honeycomb. Around each vertex figure are 126 facets: 7+7 6-simplex, 21+21 rectified 6-simplex, 35+35 birectified 6-simplex, with the count distribution from the 8th row of Pascal's triangle.

The A*
6
lattice (also called A7
6
) is the union of seven A6 lattices, and has the vertex arrangement of the dual to the omnitruncated 6-simplex honeycomb, and therefore the Voronoi cell of this lattice is the omnitruncated 6-simplex.

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel node.pngCDel split1.pngCDel nodes 10lr.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel node.pngCDel split1.pngCDel nodes 01lr.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 10lr.pngCDel 3ab.pngCDel branch.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 01lr.pngCDel 3ab.pngCDel branch.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 10l.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 01l.png = dual of CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch 11.png

This honeycomb is one of 17 unique uniform honeycombs [2] constructed by the Coxeter group, grouped by their extended symmetry of the Coxeter–Dynkin diagrams:

A6 honeycombs
Heptagon
symmetry
Extended
symmetry
Extended
diagram
Extended
group
Honeycombs
a1[3[7]]CDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png

CDel node 1.pngCDel split1.pngCDel nodes 10lur.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 10l.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 10l.png

i2[[3[7]]]CDel node c1.pngCDel split1.pngCDel nodeab c2.pngCDel 3ab.pngCDel nodeab c3.pngCDel 3ab.pngCDel branch c4.png×2

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png 1 CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch.pngCDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.pngCDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch 11.png

CDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.png 2 CDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch.pngCDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch 11.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch 11.pngCDel node.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch 11.png

r14[7[3[7]]]CDel node c1.pngCDel split1.pngCDel nodeab c1.pngCDel 3ab.pngCDel nodeab c1.pngCDel 3ab.pngCDel branch c1.png×14

CDel node 1.pngCDel split1.pngCDel nodes 11.pngCDel 3ab.pngCDel nodes 11.pngCDel 3ab.pngCDel branch 11.png 3

Projection by folding

The 6-simplex honeycomb can be projected into the 3-dimensional cubic honeycomb by a geometric folding operation that maps two pairs of mirrors into each other, sharing the same vertex arrangement:

CDel node 1.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.pngCDel 3ab.pngCDel branch.png
CDel node 1.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.png

See also

Regular and uniform honeycombs in 6-space:

Notes

  1. "The Lattice A6". Archived from the original on 2012-01-19. Retrieved 2011-05-11.

References

Space Family / /
E2 Uniform tiling 0[3] δ3 hδ3 qδ3 Hexagonal
E3 Uniform convex honeycomb 0[4] δ4 hδ4 qδ4
E4 Uniform 4-honeycomb 0[5] δ5 hδ5 qδ5 24-cell honeycomb
E5 Uniform 5-honeycomb 0[6] δ6 hδ6 qδ6
E6 Uniform 6-honeycomb 0[7] δ7 hδ7 qδ7 222
E7 Uniform 7-honeycomb 0[8] δ8 hδ8 qδ8 133331
E8 Uniform 8-honeycomb 0[9] δ9 hδ9 qδ9 152251521
E9 Uniform 9-honeycomb 0[10]δ10hδ10qδ10
E10Uniform 10-honeycomb0[11]δ11hδ11qδ11
En-1Uniform (n-1)-honeycomb 0[n] δn hδn qδn 1k22k1k21