8-demicubic honeycomb | |
---|---|
(No image) | |
Type | Uniform 8-honeycomb |
Family | Alternated hypercube honeycomb |
Schläfli symbol | h{4,3,3,3,3,3,3,4} |
Coxeter diagrams | = = |
Facets | {3,3,3,3,3,3,4} h{4,3,3,3,3,3,3} |
Vertex figure | Rectified 8-orthoplex |
Coxeter group | [4,3,3,3,3,3,31,1] [31,1,3,3,3,3,31,1] |
The 8-demicubic honeycomb, or demiocteractic honeycomb is a uniform space-filling tessellation (or honeycomb) in Euclidean 8-space. It is constructed as an alternation of the regular 8-cubic honeycomb.
It is composed of two different types of facets. The 8-cubes become alternated into 8-demicubes h{4,3,3,3,3,3,3} and the alternated vertices create 8-orthoplex {3,3,3,3,3,3,4} facets .
The vertex arrangement of the 8-demicubic honeycomb is the D8 lattice. [1] The 112 vertices of the rectified 8-orthoplex vertex figure of the 8-demicubic honeycomb reflect the kissing number 112 of this lattice. [2] The best known is 240, from the E8 lattice and the 521 honeycomb.
contains as a subgroup of index 270. [3] Both and can be seen as affine extensions of from different nodes:
The D+
8 lattice (also called D2
8) can be constructed by the union of two D8 lattices. [4] This packing is only a lattice for even dimensions. The kissing number is 240. (2n-1 for n<8, 240 for n=8, and 2n(n-1) for n>8). [5] It is identical to the E8 lattice. At 8-dimensions, the 240 contacts contain both the 27=128 from lower dimension contact progression (2n-1), and 16*7=112 from higher dimensions (2n(n-1)).
The D*
8 lattice (also called D4
8 and C2
8) can be constructed by the union of all four D8 lattices: [6] It is also the 7-dimensional body centered cubic, the union of two 7-cube honeycombs in dual positions.
The kissing number of the D*
8 lattice is 16 (2n for n≥5). [7] and its Voronoi tessellation is a quadrirectified 8-cubic honeycomb, , containing all trirectified 8-orthoplex Voronoi cell, . [8]
There are three uniform construction symmetries of this tessellation. Each symmetry can be represented by arrangements of different colors on the 256 8-demicube facets around each vertex.
Coxeter group | Schläfli symbol | Coxeter-Dynkin diagram | Vertex figure Symmetry | Facets/verf |
---|---|---|---|---|
= [31,1,3,3,3,3,3,4] = [1+,4,3,3,3,3,3,3,4] | h{4,3,3,3,3,3,3,4} | = | [3,3,3,3,3,3,4] | 256: 8-demicube 16: 8-orthoplex |
= [31,1,3,3,3,31,1] = [1+,4,3,3,3,3,31,1] | h{4,3,3,3,3,3,31,1} | = | [36,1,1] | 128+128: 8-demicube 16: 8-orthoplex |
2×½ = [[(4,3,3,3,3,3,4,2+)]] | ht0,8{4,3,3,3,3,3,3,4} | 128+64+64: 8-demicube 16: 8-orthoplex |
The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.
In eight-dimensional geometry, an eight-dimensional polytope or 8-polytope is a polytope contained by 7-polytope facets. Each 6-polytope ridge being shared by exactly two 7-polytope facets.
In nine-dimensional geometry, a nine-dimensional polytope or 9-polytope is a polytope contained by 8-polytope facets. Each 7-polytope ridge being shared by exactly two 8-polytope facets.
In four-dimensional euclidean geometry, the tesseractic honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {4,3,3,4}, and consisting of a packing of tesseracts (4-hypercubes).
In four-dimensional Euclidean geometry, the 16-cell honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {3,3,4,3}, and constructed by a 4-dimensional packing of 16-cell facets, three around every face.
In geometry, the 5-cubic honeycomb or penteractic honeycomb is the only regular space-filling tessellation in Euclidean 5-space. Four 5-cubes meet at each cubic cell, and it is more explicitly called an order-4 penteractic honeycomb.
The 5-demicube honeycomb is a uniform space-filling tessellation in Euclidean 5-space. It is constructed as an alternation of the regular 5-cube honeycomb.
The 6-demicubic honeycomb or demihexeractic honeycomb is a uniform space-filling tessellation in Euclidean 6-space. It is constructed as an alternation of the regular 6-cube honeycomb.
The 6-cubic honeycomb or hexeractic honeycomb is the only regular space-filling tessellation in Euclidean 6-space.
The 7-demicubic honeycomb, or demihepteractic honeycomb is a uniform space-filling tessellation in Euclidean 7-space. It is constructed as an alternation of the regular 7-cubic honeycomb.
The 7-cubic honeycomb or hepteractic honeycomb is the only regular space-filling tessellation in Euclidean 7-space.
In geometry, the 8-cubic honeycomb or octeractic honeycomb is the only regular space-filling tessellation in Euclidean 8-space.
In geometry, the alternated hypercube honeycomb is a dimensional infinite series of honeycombs, based on the hypercube honeycomb with an alternation operation. It is given a Schläfli symbol h{4,3...3,4} representing the regular form with half the vertices removed and containing the symmetry of Coxeter group for n ≥ 4. A lower symmetry form can be created by removing another mirror on an order-4 peak.
In geometry, the 222 honeycomb is a uniform tessellation of the six-dimensional Euclidean space. It can be represented by the Schläfli symbol {3,3,32,2}. It is constructed from 221 facets and has a 122 vertex figure, with 54 221 polytopes around every vertex.
In 7-dimensional geometry, the 331 honeycomb is a uniform honeycomb, also given by Schläfli symbol {3,3,3,33,1} and is composed of 321 and 7-simplex facets, with 56 and 576 of them respectively around each vertex.
In geometry, the 521 honeycomb is a uniform tessellation of 8-dimensional Euclidean space. The symbol 521 is from Coxeter, named for the length of the 3 branches of its Coxeter-Dynkin diagram.
In five-dimensional Euclidean geometry, the 5-simplex honeycomb or hexateric honeycomb is a space-filling tessellation. Each vertex is shared by 12 5-simplexes, 30 rectified 5-simplexes, and 20 birectified 5-simplexes. These facet types occur in proportions of 2:2:1 respectively in the whole honeycomb.
In five-dimensional Euclidean geometry, the omnitruncated 5-simplex honeycomb or omnitruncated hexateric honeycomb is a space-filling tessellation. It is composed entirely of omnitruncated 5-simplex facets.
In seven-dimensional Euclidean geometry, the 7-simplex honeycomb is a space-filling tessellation. The tessellation fills space by 7-simplex, rectified 7-simplex, birectified 7-simplex, and trirectified 7-simplex facets. These facet types occur in proportions of 2:2:2:1 respectively in the whole honeycomb.
In eight-dimensional Euclidean geometry, the omnitruncated 8-simplex honeycomb is a space-filling tessellation. It is composed entirely of omnitruncated 8-simplex facets.
Space | Family | / / | ||||
---|---|---|---|---|---|---|
E2 | Uniform tiling | 0[3] | δ3 | hδ3 | qδ3 | Hexagonal |
E3 | Uniform convex honeycomb | 0[4] | δ4 | hδ4 | qδ4 | |
E4 | Uniform 4-honeycomb | 0[5] | δ5 | hδ5 | qδ5 | 24-cell honeycomb |
E5 | Uniform 5-honeycomb | 0[6] | δ6 | hδ6 | qδ6 | |
E6 | Uniform 6-honeycomb | 0[7] | δ7 | hδ7 | qδ7 | 222 |
E7 | Uniform 7-honeycomb | 0[8] | δ8 | hδ8 | qδ8 | 133 • 331 |
E8 | Uniform 8-honeycomb | 0[9] | δ9 | hδ9 | qδ9 | 152 • 251 • 521 |
E9 | Uniform 9-honeycomb | 0[10] | δ10 | hδ10 | qδ10 | |
E10 | Uniform 10-honeycomb | 0[11] | δ11 | hδ11 | qδ11 | |
En-1 | Uniform (n-1)-honeycomb | 0[n] | δn | hδn | qδn | 1k2 • 2k1 • k21 |