Peter McMullen

Last updated

Peter McMullen
Born (1942-05-11) 11 May 1942 (age 82)
NationalityBritish
Alma mater Trinity College, Cambridge
Known for Upper bound theorem, McMullen problem
Scientific career
Fields Discrete geometry
Institutions Western Washington University (1968–1969)
University College London

Peter McMullen (born 11 May 1942) [1] is a British mathematician, a professor emeritus of mathematics at University College London. [2]

Contents

Education and career

McMullen earned bachelor's and master's degrees from Trinity College, Cambridge, and studied at the University of Birmingham, where he received his doctorate in 1968. [3] He taught at Western Washington University from 1968 to 1969. [4] In 1978 he earned his Doctor of Science at University College London where he still works as a professor emeritus. In 2006 he was accepted as a corresponding member of the Austrian Academy of Sciences. [5]

Contributions

McMullen is known for his work in polyhedral combinatorics and discrete geometry, and in particular for proving what was then called the upper bound conjecture and now is the upper bound theorem. This result states that cyclic polytopes have the maximum possible number of faces among all polytopes with a given dimension and number of vertices. [6] McMullen also formulated the g-conjecture, later the g-theorem of Louis Billera, Carl W. Lee, and Richard P. Stanley, characterizing the f-vectors of simplicial spheres. [7]

The McMullen problem is an unsolved question in discrete geometry named after McMullen, concerning the number of points in general position for which a projective transformation into convex position can be guaranteed to exist. It was credited to a private communication from McMullen in a 1972 paper by David G. Larman. [8]

He is also known for his 1960s drawing, by hand, of a 2-dimensional representation of the Gosset polytope 421, the vertices of which form the vectors of the E8 root system. [9]

Awards and honours

McMullen was invited to speak at the 1974 International Congress of Mathematicians in Vancouver; his contribution there had the title Metrical and combinatorial properties of convex polytopes. [10]

He was elected as a foreign member of the Austrian Academy of Sciences in 2006. [11] In 2012 he became an inaugural fellow of the American Mathematical Society. [12]

Selected publications

Research papers
Survey articles
Books

Related Research Articles

<span class="mw-page-title-main">Polyhedron</span> 3D shape with flat faces, straight edges and sharp corners

In geometry, a polyhedron is a three-dimensional figure with flat polygonal faces, straight edges and sharp corners or vertices.

<span class="mw-page-title-main">Discrete geometry</span> Branch of geometry that studies combinatorial properties and constructive methods

Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.

In geometry, a zonohedron is a convex polyhedron that is centrally symmetric, every face of which is a polygon that is centrally symmetric. Any zonohedron may equivalently be described as the Minkowski sum of a set of line segments in three-dimensional space, or as a three-dimensional projection of a hypercube. Zonohedra were originally defined and studied by E. S. Fedorove, a Russian crystallographer. More generally, in any dimension, the Minkowski sum of line segments forms a polytope known as a zonotope.

<span class="mw-page-title-main">Net (polyhedron)</span> Edge-joined polygons which fold into a polyhedron

In geometry, a net of a polyhedron is an arrangement of non-overlapping edge-joined polygons in the plane which can be folded to become the faces of the polyhedron. Polyhedral nets are a useful aid to the study of polyhedra and solid geometry in general, as they allow for physical models of polyhedra to be constructed from material such as thin cardboard.

<span class="mw-page-title-main">Convex polytope</span> Convex hull of a finite set of points in a Euclidean space

A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary.

<span class="mw-page-title-main">Vertex (geometry)</span> Point where two or more curves, lines, or edges meet

In geometry, a vertex is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedron are vertices.

Combinatorial commutative algebra is a relatively new, rapidly developing mathematical discipline. As the name implies, it lies at the intersection of two more established fields, commutative algebra and combinatorics, and frequently uses methods of one to address problems arising in the other. Less obviously, polyhedral geometry plays a significant role.

In algebraic combinatorics, the h-vector of a simplicial polytope is a fundamental invariant of the polytope which encodes the number of faces of different dimensions and allows one to express the Dehn–Sommerville equations in a particularly simple form. A characterization of the set of h-vectors of simplicial polytopes was conjectured by Peter McMullen and proved by Lou Billera and Carl W. Lee and Richard Stanley (g-theorem). The definition of h-vector applies to arbitrary abstract simplicial complexes. The g-conjecture stated that for simplicial spheres, all possible h-vectors occur already among the h-vectors of the boundaries of convex simplicial polytopes. It was proven in December 2018 by Karim Adiprasito.

Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes.

In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs.

In geometry and combinatorics, a simpliciald-sphere is a simplicial complex homeomorphic to the d-dimensional sphere. Some simplicial spheres arise as the boundaries of convex polytopes, however, in higher dimensions most simplicial spheres cannot be obtained in this way.

<span class="mw-page-title-main">Louis Billera</span> American mathematician

Louis Joseph Billera is a Professor of Mathematics at Cornell University.

<span class="mw-page-title-main">Polyhedral graph</span> Graph made from vertices and edges of a convex polyhedron

In geometric graph theory, a branch of mathematics, a polyhedral graph is the undirected graph formed from the vertices and edges of a convex polyhedron. Alternatively, in purely graph-theoretic terms, the polyhedral graphs are the 3-vertex-connected, planar graphs.

In geometry and polyhedral combinatorics, a k-neighborly polytope is a convex polytope in which every set of k or fewer vertices forms a face. For instance, a 2-neighborly polytope is a polytope in which every pair of vertices is connected by an edge, forming a complete graph. 2-neighborly polytopes with more than four vertices may exist only in spaces of four or more dimensions, and in general a k-neighborly polytope requires a dimension of 2k or more. A d-simplex is d-neighborly. A polytope is said to be neighborly, without specifying k, if it is k-neighborly for k = ⌊d2. If we exclude simplices, this is the maximum possible k: in fact, every polytope that is k-neighborly for some k ≥ 1 + ⌊d2 is a simplex.

In mathematics, a cyclic polytope, denoted C(n, d), is a convex polytope formed as a convex hull of n distinct points on a rational normal curve in Rd, where n is greater than d. These polytopes were studied by Constantin Carathéodory, David Gale, Theodore Motzkin, Victor Klee, and others. They play an important role in polyhedral combinatorics: according to the upper bound theorem, proved by Peter McMullen and Richard Stanley, the boundary Δ(n,d) of the cyclic polytope C(n,d) maximizes the number fi of i-dimensional faces among all simplicial spheres of dimension d − 1 with n vertices.

Geoffrey Colin Shephard was a mathematician who worked on convex geometry and reflection groups. He asked Shephard's problem on the volumes of projected convex bodies, posed another problem on polyhedral nets, proved the Shephard–Todd theorem in invariant theory of finite groups, began the study of complex polytopes, and classified the complex reflection groups.

The McMullen problem is an open problem in discrete geometry named after Peter McMullen.

In geometry, more specifically in polytope theory, Kalai's 3d conjecture is a conjecture on the polyhedral combinatorics of centrally symmetric polytopes, made by Gil Kalai in 1989. It states that every d-dimensional centrally symmetric polytope has at least 3d nonempty faces.

In mathematics, the upper bound theorem states that cyclic polytopes have the largest possible number of faces among all convex polytopes with a given dimension and number of vertices. It is one of the central results of polyhedral combinatorics.

Convex Polytopes is a graduate-level mathematics textbook about convex polytopes, higher-dimensional generalizations of three-dimensional convex polyhedra. It was written by Branko Grünbaum, with contributions from Victor Klee, Micha Perles, and G. C. Shephard, and published in 1967 by John Wiley & Sons. It went out of print in 1970. A second edition, prepared with the assistance of Volker Kaibel, Victor Klee, and Günter M. Ziegler, was published by Springer-Verlag in 2003, as volume 221 of their book series Graduate Texts in Mathematics.

References

  1. Peter McMullen, Peter M. Gruber, retrieved 2013-11-03.
  2. UCL IRIS information system, accessed 2013-11-05.
  3. McMullen, Peter; Schulte, Egon (12 December 2002), Abstract and regular polytopes, ISBN   9780521814966 , retrieved 2022-05-11
  4. Peter McMullen Collection, 1967-1968, Special Collections, Wilson Library, Western Washington University, retrieved from worldcat.org 2013-11-03.
  5. "Austrian Academy of Sciences: Peter McMullen" . Retrieved 2022-05-11.
  6. Ziegler, Günter M. (1995), Lectures on Polytopes, Graduate Texts in Mathematics, vol. 152, Springer, p. 254, ISBN   9780387943657, Finally, in 1970 McMullen gave a complete proof of the upper-bound conjecture – since then it has been known as the upper bound theorem. McMullen's proof is amazingly simple and elegant, combining to key tools: shellability and h-vectors.
  7. Gruber, Peter M. (2007), Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 336, Berlin: Springer, p. 265, ISBN   978-3-540-71132-2, MR   2335496, The problem of characterizing the f-vectors of convex polytopes is ... far from a solution, but there are important contributions towards it. For simplicial convex polytopes a characterization was proposed by McMullen in the form of his celebrated g-conjecture. The g-conjecture was proved by Billera and Lee and Stanley.
  8. Larman, D. G. (1972), "On sets projectively equivalent to the vertices of a convex polytope", The Bulletin of the London Mathematical Society, 4: 6–12, doi:10.1112/blms/4.1.6, MR   0307040
  9. "A picture of the E8 root system". American Institute of Mathematics. Retrieved 2022-05-11.
  10. ICM 1974 proceedings Archived 2017-12-04 at the Wayback Machine .
  11. Awards, Appointments, Elections & Honours, University College London, June 2006, retrieved 2013-11-03.
  12. List of AMS fellows, retrieved 2013-11-03.