In geometry and combinatorics, a simplicial (or combinatorial) d-sphere is a simplicial complex homeomorphic to the d-dimensional sphere. Some simplicial spheres arise as the boundaries of convex polytopes, however, in higher dimensions most simplicial spheres cannot be obtained in this way.
One important open problem in the field was the g-conjecture, formulated by Peter McMullen, which asks about possible numbers of faces of different dimensions of a simplicial sphere. In December 2018, the g-conjecture was proven by Karim Adiprasito in the more general context of rational homology spheres. [1] [2]
It follows from Euler's formula that any simplicial 2-sphere with n vertices has 3n− 6 edges and 2n− 4 faces. The case of n = 4 is realized by the tetrahedron. By repeatedly performing the barycentric subdivision, it is easy to construct a simplicial sphere for any n ≥ 4. Moreover, Ernst Steinitz gave a characterization of 1-skeleta (or edge graphs) of convex polytopes in R3 implying that any simplicial 2-sphere is a boundary of a convex polytope.
Branko Grünbaum constructed an example of a non-polytopal simplicial sphere (that is, a simplicial sphere that is not the boundary of a polytope). Gil Kalai proved that, in fact, "most" simplicial spheres are non-polytopal. The smallest example is of dimension d = 4 and has f0 = 8 vertices.
The upper bound theorem gives upper bounds for the numbers fi of i-faces of any simplicial d-sphere with f0 = n vertices. This conjecture was proved for simplicial convex polytopes by Peter McMullen in 1970 [3] and by Richard Stanley for general simplicial spheres in 1975.
The g-conjecture, formulated by McMullen in 1970, asks for a complete characterization of f-vectors of simplicial d-spheres. In other words, what are the possible sequences of numbers of faces of each dimension for a simplicial d-sphere? In the case of polytopal spheres, the answer is given by the g-theorem, proved in 1979 by Billera and Lee (existence) and Stanley (necessity). It has been conjectured that the same conditions are necessary for general simplicial spheres. The conjecture was proved by Karim Adiprasito in December 2018. [1] [2]
In geometry, a polyhedron is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. The word polyhedron comes from the Classical Greek πολύεδρον, as poly- + -hedron.
In elementary geometry, a polytope is a geometric object with flat sides (faces). It is a generalization in any number of dimensions of the three-dimensional polyhedron. Polytopes may exist in any general number of dimensions n as an n-dimensional polytope or n-polytope. In this context, "flat sides" means that the sides of a (k+1)-polytope consist of k-polytopes that may have (k−1)-polytopes in common. For example, a two-dimensional polygon is a 2-polytope and a three-dimensional polyhedron is a 3-polytope.
Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary.
In mathematics, the "happy ending problem" is the following statement:
In mathematical programming and polyhedral combinatorics, the Hirsch conjecture is the statement that the edge-vertex graph of an n-facet polytope in d-dimensional Euclidean space has diameter no more than n − d. That is, any two vertices of the polytope must be connected to each other by a path of length at most n − d. The conjecture was first put forth in a letter by Warren M. Hirsch to George B. Dantzig in 1957 and was motivated by the analysis of the simplex method in linear programming, as the diameter of a polytope provides a lower bound on the number of steps needed by the simplex method. The conjecture is now known to be false in general.
Combinatorial commutative algebra is a relatively new, rapidly developing mathematical discipline. As the name implies, it lies at the intersection of two more established fields, commutative algebra and combinatorics, and frequently uses methods of one to address problems arising in the other. Less obviously, polyhedral geometry plays a significant role.
In algebraic combinatorics, the h-vector of a simplicial polytope is a fundamental invariant of the polytope which encodes the number of faces of different dimensions and allows one to express the Dehn–Sommerville equations in a particularly simple form. A characterization of the set of h-vectors of simplicial polytopes was conjectured by Peter McMullen and proved by Lou Billera and Carl W. Lee and Richard Stanley (g-theorem). The definition of h-vector applies to arbitrary abstract simplicial complexes. The g-conjecture stated that for simplicial spheres, all possible h-vectors occur already among the h-vectors of the boundaries of convex simplicial polytopes. It was proven in December 2018 by Karim Adiprasito.
Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes.
In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs.
In geometry and polyhedral combinatorics, a k-neighborly polytope is a convex polytope in which every set of k or fewer vertices forms a face. For instance, a 2-neighborly polytope is a polytope in which every pair of vertices is connected by an edge, forming a complete graph. 2-neighborly polytopes with more than four vertices may exist only in spaces of four or more dimensions, and in general a k-neighborly polytope requires a dimension of 2k or more. A d-simplex is d-neighborly. A polytope is said to be neighborly, without specifying k, if it is k-neighborly for . If we exclude simplices, this is the maximum possible k: in fact, every polytope that is k-neighborly for some is a simplex.
In mathematics, a cyclic polytope, denoted C(n,d), is a convex polytope formed as a convex hull of n distinct points on a rational normal curve in Rd, where n is greater than d. These polytopes were studied by Constantin Carathéodory, David Gale, Theodore Motzkin, Victor Klee, and others. They play an important role in polyhedral combinatorics: according to the upper bound theorem, proved by Peter McMullen and Richard Stanley, the boundary Δ(n,d) of the cyclic polytope C(n,d) maximizes the number fi of i-dimensional faces among all simplicial spheres of dimension d − 1 with n vertices.
In combinatorial mathematics, an Eulerian poset is a graded poset in which every nontrivial interval has the same number of elements of even rank as of odd rank. An Eulerian poset which is a lattice is an Eulerian lattice. These objects are named after Leonhard Euler. Eulerian lattices generalize face lattices of convex polytopes and much recent research has been devoted to extending known results from polyhedral combinatorics, such as various restrictions on f-vectors of convex simplicial polytopes, to this more general setting.
The McMullen problem is an open problem in discrete geometry named after Peter McMullen.
In geometry, a Hanner polytope is a convex polytope constructed recursively by Cartesian product and polar dual operations. Hanner polytopes are named after Olof Hanner, who introduced them in 1956.
In geometry, Kalai's 3d conjecture is a conjecture on the polyhedral combinatorics of centrally symmetric polytopes, made by Gil Kalai in 1989. It states that every d-dimensional centrally symmetric polytope has at least 3d nonempty faces.
In mathematics, the upper bound theorem states that cyclic polytopes have the largest possible number of faces among all convex polytopes with a given dimension and number of vertices. It is one of the central results of polyhedral combinatorics.
Peter McMullen is a British mathematician, a professor emeritus of mathematics at University College London.
Karim Alexander Adiprasito is a German mathematician at the University of Copenhagen and the Hebrew University of Jerusalem who works in combinatorics. He completed his Ph.D. in 2013 at Free University Berlin under the supervision of Günter M. Ziegler. He has been a professor at the Hebrew University since 2015, and at University of Copenhagen since 2019. He is of German and Indonesian descent, and bears an Indonesian surname.
Convex Polytopes is a graduate-level mathematics textbook about convex polytopes, higher-dimensional generalizations of three-dimensional convex polyhedra. It was written by Branko Grünbaum, with contributions from Victor Klee, Micha Perles, and G. C. Shephard, and published in 1967 by John Wiley & Sons. It went out of print in 1970. A second edition, prepared with the assistance of Volker Kaibel, Victor Klee, and Günter M. Ziegler, was published by Springer-Verlag in 2003, as volume 221 of their book series Graduate Texts in Mathematics.