McMullen problem

Last updated
Unsolved problem in mathematics:

For how many points is it always possible to projectively transform the points into convex position?

Contents

The McMullen problem is an open problem in discrete geometry named after Peter McMullen.

Statement

In 1972, David G. Larman wrote about the following problem: [1]

Determine the largest number such that for any given points in general position in the -dimensional affine space there is a projective transformation mapping these points into convex position (so they form the vertices of a convex polytope).

Larman credited the problem to a private communication by Peter McMullen.

Equivalent formulations

Gale transform

Using the Gale transform, this problem can be reformulated as:

Determine the smallest number such that for every set of points in linearly general position on the sphere it is possible to choose a set where for , such that every open hemisphere of contains at least two members of .

The numbers of the original formulation of the McMullen problem and of the Gale transform formulation are connected by the relationships

Partition into nearly-disjoint hulls

Also, by simple geometric observation, it can be reformulated as:

Determine the smallest number such that for every set of points in there exists a partition of into two sets and with

The relation between and is

Projective duality

An arrangement of lines dual to the regular pentagon. Every five-line projective arrangement, like this one, has a cell touched by all five lines. However, adding the line at infinity produces a six-line arrangement with six pentagon faces and ten triangle faces; no face is touched by all of the lines. Therefore, the solution to the McMullen problem for d = 2 is n = 5. Pentagon dual arrangement.svg
An arrangement of lines dual to the regular pentagon. Every five-line projective arrangement, like this one, has a cell touched by all five lines. However, adding the line at infinity produces a six-line arrangement with six pentagon faces and ten triangle faces; no face is touched by all of the lines. Therefore, the solution to the McMullen problem for d = 2 is ν = 5.

The equivalent projective dual statement to the McMullen problem is to determine the largest number such that every set of hyperplanes in general position in d-dimensional real projective space form an arrangement of hyperplanes in which one of the cells is bounded by all of the hyperplanes.

Results

This problem is still open. However, the bounds of are in the following results:

The conjecture of this problem is that . This has been proven for . [1] [4]

Related Research Articles

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue, although according to the Bourbaki group they were first introduced by Frigyes Riesz. Lp spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Because of their key role in the mathematical analysis of measure and probability spaces, Lebesgue spaces are used also in the theoretical discussion of problems in physics, statistics, finance, engineering, and other disciplines.

Noethers theorem Statement relating differentiable symmetries to conserved quantities

Noether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether in 1915 and published in 1918, after a special case was proven by E. Cosserat and F. Cosserat in 1909. The action of a physical system is the integral over time of a Lagrangian function, from which the system's behavior can be determined by the principle of least action. This theorem only applies to continuous and smooth symmetries over physical space.

Wavenumber Spatial frequency of a wave

In the physical sciences, the wavenumber is the spatial frequency of a wave, measured in cycles per unit distance or radians per unit distance. Whereas temporal frequency can be thought of as the number of waves per unit time, wavenumber is the number of waves per unit distance.

Hookes law Principle of physics that states that the force (F) needed to extend or compress a spring by some distance X scales linearly with respect to that distance

Hooke's law is a law of physics that states that the force needed to extend or compress a spring by some distance scales linearly with respect to that distance—that is, Fs = kx, where k is a constant factor characteristic of the spring, and x is small compared to the total possible deformation of the spring. The law is named after 17th-century British physicist Robert Hooke. He first stated the law in 1676 as a Latin anagram. He published the solution of his anagram in 1678 as: ut tensio, sic vis. Hooke states in the 1678 work that he was aware of the law since 1660.

In calculus, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central operations of calculus—differentiation and integration. This relationship is commonly characterized in the framework of Riemann integration, but with absolute continuity it may be formulated in terms of Lebesgue integration. For real-valued functions on the real line, two interrelated notions appear: absolute continuity of functions and absolute continuity of measures. These two notions are generalized in different directions. The usual derivative of a function is related to the Radon–Nikodym derivative, or density, of a measure.

In mathematics, the Radon–Nikodym theorem is a result in measure theory that expresses the relationship between two measures defined on the same measurable space. A measure is a set function that assigns a consistent magnitude to the measurable subsets of a measurable space. Examples of a measure include area and volume, where the subsets are sets of points; or the probability of an event, which is a subset of possible outcomes within a wider probability space.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

An optical medium is material through which electromagnetic waves propagate. It is a form of transmission medium. The permittivity and permeability of the medium define how electromagnetic waves propagate in it. The medium has an intrinsic impedance, given by

In differential geometry, a tensor density or relative tensor is a generalization of the tensor field concept. A tensor density transforms as a tensor field when passing from one coordinate system to another, except that it is additionally multiplied or weighted by a power W of the Jacobian determinant of the coordinate transition function or its absolute value. A distinction is made among (authentic) tensor densities, pseudotensor densities, even tensor densities and odd tensor densities. Sometimes tensor densities with a negative weight W are called tensor capacity. A tensor density can also be regarded as a section of the tensor product of a tensor bundle with a density bundle.

In algebra, the Binet–Cauchy identity, named after Jacques Philippe Marie Binet and Augustin-Louis Cauchy, states that

In mathematics, there are at least two results known as Weyl's inequality.

Vertex model

A vertex model is a type of statistical mechanics model in which the Boltzmann weights are associated with a vertex in the model. This contrasts with a nearest-neighbour model, such as the Ising model, in which the energy, and thus the Boltzmann weight of a statistical microstate is attributed to the bonds connecting two neighbouring particles. The energy associated with a vertex in the lattice of particles is thus dependent on the state of the bonds which connect it to adjacent vertices. It turns out that every solution of the Yang–Baxter equation with spectral parameters in a tensor product of vector spaces yields an exactly-solvable vertex model.

In mathematics, Hua's lemma, named for Hua Loo-keng, is an estimate for exponential sums.

Newman–Penrose formalism Notation in general relativity

The Newman–Penrose (NP) formalism is a set of notation developed by Ezra T. Newman and Roger Penrose for general relativity (GR). Their notation is an effort to treat general relativity in terms of spinor notation, which introduces complex forms of the usual variables used in GR. The NP formalism is itself a special case of the tetrad formalism, where the tensors of the theory are projected onto a complete vector basis at each point in spacetime. Usually this vector basis is chosen to reflect some symmetry of the spacetime, leading to simplified expressions for physical observables. In the case of the NP formalism, the vector basis chosen is a null tetrad: a set of four null vectors—two real, and a complex-conjugate pair. The two real members asymptotically point radially inward and radially outward, and the formalism is well adapted to treatment of the propagation of radiation in curved spacetime. The Weyl scalars, derived from the Weyl tensor, are often used. In particular, it can be shown that one of these scalars— in the appropriate frame—encodes the outgoing gravitational radiation of an asymptotically flat system.

In mathematics, the Brunn–Minkowski theorem is an inequality relating the volumes of compact subsets of Euclidean space. The original version of the Brunn–Minkowski theorem applied to convex sets; the generalization to compact nonconvex sets stated here is due to Lazar Lyusternik (1935).

In physics and mathematics, the κ-Poincaré group, named after Henri Poincaré, is a quantum group, obtained by deformation of the Poincaré group into a Hopf algebra. It is generated by the elements and with the usual constraint:

The table of chords, created by the Greek astronomer, geometer, and geographer Ptolemy in Egypt during the 2nd century AD, is a trigonometric table in Book I, chapter 11 of Ptolemy's Almagest, a treatise on mathematical astronomy. It is essentially equivalent to a table of values of the sine function. It was the earliest trigonometric table extensive enough for many practical purposes, including those of astronomy. Centuries passed before more extensive trigonometric tables were created. One such table is the Canon Sinuum created at the end of the 16th century.

Stochastic portfolio theory (SPT) is a mathematical theory for analyzing stock market structure and portfolio behavior introduced by E. Robert Fernholz in 2002. It is descriptive as opposed to normative, and is consistent with the observed behavior of actual markets. Normative assumptions, which serve as a basis for earlier theories like modern portfolio theory (MPT) and the capital asset pricing model (CAPM), are absent from SPT.

In mathematics, the Christ–Kiselev maximal inequality is a maximal inequality for filtrations, named for mathematicians Michael Christ and Alexander Kiselev.

Dual graviton

In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of supergravity in eleven dimensions.

References

  1. 1 2 3 Larman, D. G. (1972), "On sets projectively equivalent to the vertices of a convex polytope", The Bulletin of the London Mathematical Society , 4: 6–12, doi:10.1112/blms/4.1.6, MR   0307040
  2. Las Vergnas, Michel (1986), "Hamilton paths in tournaments and a problem of McMullen on projective transformations in ", The Bulletin of the London Mathematical Society , 18 (6): 571–572, doi:10.1112/blms/18.6.571, MR   0859948
  3. Ramírez Alfonsín, J. L. (2001), "Lawrence oriented matroids and a problem of McMullen on projective equivalences of polytopes", European Journal of Combinatorics , 22 (5): 723–731, doi: 10.1006/eujc.2000.0492 , MR   1845496
  4. Forge, David; Las Vergnas, Michel; Schuchert, Peter (2001), "10 points in dimension 4 not projectively equivalent to the vertices of a convex polytope", Combinatorial geometries (Luminy, 1999), European Journal of Combinatorics , 22 (5): 705–708, doi: 10.1006/eujc.2000.0490 , MR   1845494