In geometry, an arrangement of lines is the subdivision of the Euclidean plane formed by a finite set of lines. An arrangement consists of bounded and unbounded convex polygons, the cells of the arrangement, line segments and rays, the edges of the arrangement, and points where two or more lines cross, the vertices of the arrangement. When considered in the projective plane rather than in the Euclidean plane, every two lines cross, and an arrangement is the projective dual to a finite set of points. Arrangements of lines have also been considered in the hyperbolic plane, and generalized to pseudolines, curves that have similar topological properties to lines. The initial study of arrangements has been attributed to an 1826 paper by Jakob Steiner.
An arrangement is said to be simple when at most two lines cross at each vertex, and simplicial when all cells are triangles (including the unbounded cells, as subsets of the projective plane). There are three known infinite families of simplicial arrangements, as well as many sporadic simplicial arrangements that do not fit into any known family. Arrangements have also been considered for infinite but locally finite systems of lines. Certain infinite arrangements of parallel lines can form simplicial arrangements, and one way of constructing the aperiodic Penrose tiling involves finding the dual graph of an arrangement of lines forming five parallel subsets.
The maximum numbers of cells, edges, and vertices, for arrangements with a given number of lines, are quadratic functions of the number of lines. These maxima are attained by simple arrangements. The complexity of other features of arrangements have been studied in discrete geometry; these include zones, the cells touching a single line, and levels, the polygonal chains having a given number of lines passing below them. Roberts's triangle theorem and the Kobon triangle problem concern the minimum and maximum number of triangular cells in a Euclidean arrangement, respectively.
Algorithms in computational geometry are known for constructing the features of an arrangement in time proportional to the number of features, and space linear in the number of lines. As well, researchers have studied efficient algorithms for constructing smaller portions of an arrangement, and for problems such as the shortest path problem on the vertices and edges of an arrangement.
Definition
As an informal thought experiment, consider cutting an infinite sheet of paper along finitely many lines. These cuts would partition the paper into convex polygons. Their edges would be one-dimensional line segments or rays, with vertices at the points where two cut lines cross. This can be formalized mathematically by classifying the points of the plane according to which side of each line they are on. Each line produces three possibilities per point: the point can be in one of the two open half-planes on either side of the line, or it can be on the line. Two points can be considered to be equivalent if they have the same classification with respect to all of the lines. This is an equivalence relation, whose equivalence classes are subsets of equivalent points. These subsets subdivide the plane into shapes of the following three types:[1]
The cells or chambers of the arrangement are two-dimensional regions not part of any line. They form the interiors of bounded convex polygons or unbounded convex regions. These are the connected components of the points that would remain after removing all points on lines.[1]
The edges or panels of the arrangement are one-dimensional regions belonging to a single line. They are the open line segments and open infinite rays into which each line is partitioned by its crossing points with the other lines. That is, if one of the lines is cut by all the other lines, these are the connected components of its uncut points.[1]
The vertices of the arrangement are isolated points belonging to two or more lines, where those lines cross each other.[1]
The boundary of a cell is the system of edges that touch it, and the boundary of an edge is the set of vertices that touch it (one vertex for a ray and two for a line segment). The system of objects of all three types, linked by this boundary operator, form a cell complex covering the plane. Two arrangements are said to be isomorphic or combinatorially equivalent if there is a one-to-one boundary-preserving correspondence between the objects in their associated cell complexes.[1]
The same classification of points, and the same shapes of equivalence classes, can be used for infinite but locally finite arrangements, defined as arrangements in which every bounded subset of the plane is crossed by finitely many lines.[2] In this case the unbounded cells may have infinitely many sides.[3]
Complexity of arrangements
It is straightforward to count the maximum numbers of vertices, edges, and cells in an arrangement, all of which are quadratic in the number of lines:
An arrangement with lines has at most vertices (a triangular number), one per pair of crossing lines. This maximum is attained for simple arrangements, those in which each two lines cross at a vertex that is disjoint from all the other lines. The number of vertices is smaller when some lines are parallel, or when some vertices are crossed by more than two lines.[4]
An arrangement can be rotated, if necessary, to avoid axis-parallel lines. After this step, each ray that forms an edge of the arrangement extends either upward or downward from its endpoint; it cannot be horizontal. There are downward rays, one per line, and these rays separate cells of the arrangement that are unbounded in the downward direction. The remaining cells all have a unique bottommost vertex (again, because there are no axis-parallel lines). For each pair of lines, there can be only one cell where the two lines meet at the bottom vertex, so the number of downward-bounded cells is at most the number of pairs of lines, . Adding the unbounded and bounded cells, the total number of cells in an arrangement can be at most .[5] These are the numbers of the lazy caterer's sequence.[6]
The number of edges of the arrangement is at most , as may be seen either by using the Euler characteristic to calculate it from the numbers of vertices and cells, or by observing that each line is partitioned into at most edges by the other lines. Simple arrangements have exactly edges.[5]
More complex features go by the names of "zones", "levels", and "many faces":
The zone of a line in a line arrangement is the collection of cells having edges belonging to . The zone theorem states that the total number of edges in the cells of a single zone is linear. More precisely, the total number of edges of the cells belonging to a single side of line is at most ,[7] and the total number of edges of the cells belonging to both sides of is at most .[8] More generally, the total complexity of the cells of a line arrangement that are intersected by any convex curveis , where denotes the inverse Ackermann function, as may be shown using Davenport–Schinzel sequences.[9] The sum of squares of cell complexities in an arrangement is , as can be shown by summing the zones of all lines.[10]
The -level of an arrangement is the polygonal chain formed by the edges that have exactly other lines directly below them. The -level is the portion of the arrangement below the -level. Finding matching upper and lower bounds for the complexity of a -level remains a major open problem in discrete geometry. The best upper bound known is , while the best lower bound known is .[11] In contrast, the maximum complexity of the -level is known to be .[12] A -level is a special case of a monotone path in an arrangement; that is, a sequence of edges that intersects any vertical line in a single point. However, monotone paths may be much more complicated than -levels: there exist arrangements and monotone paths in these arrangements where the number of points at which the path changes direction is .[13]
Although a single cell in an arrangement may be bounded by all lines, it is not possible in general for different cells to all be bounded by lines. Rather, the total complexity of cells is at most ,[14] almost the same bound as occurs in the Szemerédi–Trotter theorem on point-line incidences in the plane. A simple proof of this follows from the crossing number inequality:[15] if cells have a total of edges, one can form a graph with nodes (one per cell) and edges (one per pair of consecutive cells on the same line). The edges of this graph can be drawn as curves that do not cross within the cells corresponding to their endpoints, and then follow the lines of the arrangement. Therefore, there are crossings in this drawing. However, by the crossing number inequality, there are crossings. In order to satisfy both bounds, must be .[16]
Projective arrangements and projective duality
It is convenient to study line arrangements in the projective plane as every pair of lines has a crossing point.[17] Line arrangements cannot be defined using the sides of lines, because a line in the projective plane does not separate the plane into two distinct sides.[18] One may still define the cells of an arrangement to be the connected components of the points not belonging to any line, the edges to be the connected components of sets of points belonging to a single line, and the vertices to be points where two or more lines cross. A line arrangement in the projective plane differs from its Euclidean counterpart in that the two Euclidean rays at either end of a line are replaced by a single edge in the projective plane that connects the leftmost and rightmost vertices on that line, and in that pairs of unbounded Euclidean cells are replaced in the projective plane by single cells that are crossed by the projective line at infinity.[19]
Due to projective duality, many statements about the combinatorial properties of points in the plane may be more easily understood in an equivalent dual form about arrangements of lines. For instance, the Sylvester–Gallai theorem, stating that any non-collinear set of points in the plane has an ordinary line containing exactly two points, transforms under projective duality to the statement that any projective arrangement of finitely many lines with more than one vertex has an ordinary point, a vertex where only two lines cross. The earliest known proof of the Sylvester–Gallai theorem, by Eberhard Melchior in 1940, uses the Euler characteristic to show that such a vertex must always exist.[20]
Triangles in arrangements
An arrangement of lines in the projective plane is said to be simplicial if every cell of the arrangement is bounded by exactly three edges. Simplicial arrangements were first studied by Melchior.[21] Three infinite families of simplicial line arrangements are known:
A near-pencil consisting of lines through a single point, together with a single additional line that does not go through the same point,
The sides and axes of symmetry of an even regular polygon, together with the line at infinity.
Additionally there are many other examples of sporadic simplicial arrangements that do not fit into any known infinite family.[22] As Branko Grünbaum writes, simplicial arrangements "appear as examples or counterexamples in many contexts of combinatorial geometry and its applications."[23] For instance, simplicial arrangements form counterexamples to a conjecture on the relation between the degree of a set of differential equations and the number of invariant lines the equations may have.[24] The two known counterexamples to the Dirac–Motzkin conjecture (which states that any -line arrangement has at least ordinary points) are both simplicial.[25]
The dual graph of a line arrangement has one node per cell and one edge linking any pair of cells that share an edge of the arrangement. These graphs are partial cubes, graphs in which the nodes can be labeled by bitvectors in such a way that the graph distance equals the Hamming distance between labels. In the case of a line arrangement, each coordinate of the labeling assigns 0 to nodes on one side of one of the lines and 1 to nodes on the other side.[26] Dual graphs of simplicial arrangements have been used to construct infinite families of 3-regular partial cubes, isomorphic to the graphs of simple zonohedra.[27]
It is also of interest to study the extremal numbers of triangular cells in arrangements that may not necessarily be simplicial. Any arrangement in the projective plane must have at least triangles. Every arrangement that has only triangles must be simple.[28] For Euclidean rather than projective arrangements, the minimum number of triangles is , by Roberts's triangle theorem.[29] The maximum possible number of triangular faces in a simple arrangement is known to be upper bounded by and lower bounded by ; the lower bound is achieved by certain subsets of the diagonals of a regular -gon.[30] For projective arrangements that are not required to be simple, there exist arrangements with triangles for all , and all arrangements with have at most triangles.[31] The closely related Kobon triangle problem asks for the maximum number of non-overlapping finite triangles in an arrangement in the Euclidean plane, not counting the unbounded faces that might form triangles in the projective plane. Again, the arrangements are not required to be simple. For some but not all values of , there exist arrangements with triangles.[32]
Multigrids and rhombus tilings
The dual graph of a simple line arrangement may be represented geometrically as a collection of rhombi, one per vertex of the arrangement, with sides perpendicular to the lines that meet at that vertex. These rhombi may be joined together to form a tiling of a convex polygon in the case of an arrangement of finitely many lines, or of the entire plane in the case of a locally finite arrangement with infinitely many lines. This construction is sometimes known as a Klee diagram, after a publication of Rudolf Klee in 1938 that used this technique. Not every rhombus tiling comes from lines in this way, however.[33]
In a 1981 paper, N. G. de Bruijn investigated special cases of this construction in which the line arrangement consists of sets of equally spaced parallel lines. For two perpendicular families of parallel lines this construction gives the square tiling of the plane, and for three families of lines at 120-degree angles from each other (themselves forming a trihexagonal tiling) this produces the rhombille tiling. However, for more families of lines this construction produces aperiodic tilings. In particular, for five families of lines at equal angles to each other (or, as de Bruijn calls this arrangement, a pentagrid) it produces a family of tilings that include the rhombic version of the Penrose tilings.[34]
There also exist three infinite simplicial arrangements formed from sets of parallel lines. The tetrakis square tiling is an infinite arrangement of lines forming a periodic tiling that resembles a multigrid with four parallel families, but in which two of the families are more widely spaced than the other two, and in which the arrangement is simplicial rather than simple. Its dual is the truncated square tiling. Similarly, the triangular tiling is an infinite simplicial line arrangement with three parallel families, which has as its dual the hexagonal tiling, and the bisected hexagonal tiling is an infinite simplicial line arrangement with six parallel families and two line spacings, dual to the great rhombitrihexagonal tiling. These three examples come from three affine reflection groups in the Euclidean plane, systems of symmetries based on reflection across each line in these arrangements.[35]
Algorithms
Constructing an arrangement means, given as input a list of the lines in the arrangement, computing a representation of the vertices, edges, and cells of the arrangement together with the adjacencies between these objects. For instance, these features may be represented as a doubly connected edge list. Arrangements can be constructed efficiently by an incremental algorithm that adds one line at a time to the arrangement of the previously added lines. Each new line can be added in time proportional to the size of its zone, linear by the zone theorem. This results in a total construction time of .[7] The memory requirements of this algorithm are also . It is possible instead to report the features of an arrangement without storing them all at once, in time and space , by an algorithmic technique known as topological sweeping.[36] Computing a line arrangement exactly requires a numerical precision several times greater than that of the input coordinates: if a line is specified by two points on it, the coordinates of the arrangement vertices may need four times as much precision as these input points. Therefore, computational geometers have also studied algorithms for constructing arrangements with limited numerical precision.[37]
As well, researchers have studied efficient algorithms for constructing smaller portions of an arrangement, such as zones,[38]-levels,[39] or the set of cells containing a given set of points.[40] The problem of finding the arrangement vertex with the median -coordinate arises (in a dual form) in robust statistics as the problem of computing the Theil–Sen estimator of a set of points.[41]
Marc van Kreveld suggested the algorithmic problem of computing shortest paths between vertices in a line arrangement, where the paths are restricted to follow the edges of the arrangement, more quickly than the quadratic time that it would take to apply a shortest path algorithm to the whole arrangement graph.[42] An approximation algorithm is known,[43] and the problem may be solved efficiently for lines that fall into a small number of parallel families (as is typical for urban street grids),[44] but the general problem remains open.[45]
Non-Euclidean line arrangements
A non-stretchable pseudoline arrangement of nine pseudolines. (All arrangements of fewer than nine pseudolines are stretchable.) Per Pappus's hexagon theorem, this arrangement cannot be realized in a projective plane over any field.
A pseudoline arrangement is a family of curves that share similar topological properties with a line arrangement.[46] These can be defined in the projective plane as simple closed curves any two of which meet in a single crossing point.[47] A pseudoline arrangement is said to be stretchable if it is combinatorially equivalent to a line arrangement. Determining stretchability is a difficult computational task: it is complete for the existential theory of the reals to distinguish stretchable arrangements from non-stretchable ones.[48] Every arrangement of finitely many pseudolines can be extended so that they become lines in a "spread", a type of non-Euclidean incidence geometry in which every two points of a topological plane are connected by a unique line (as in the Euclidean plane) but in which other axioms of Euclidean geometry may not apply.[49]
Another type of non-Euclidean geometry is the hyperbolic plane, and arrangements of lines in this geometry have also been studied.[50] Any finite set of lines in the Euclidean plane has a combinatorially equivalent arrangement in the hyperbolic plane (e.g. by enclosing the vertices of the arrangement by a large circle and interpreting the interior of the circle as a Klein model of the hyperbolic plane). However, parallel (non-crossing) pairs of lines are less restricted in hyperbolic line arrangements than in the Euclidean plane: in particular, the relation of being parallel is an equivalence relation for Euclidean lines but not for hyperbolic lines.[51] The intersection graph of the lines in a hyperbolic arrangement can be an arbitrary circle graph. The corresponding concept to hyperbolic line arrangements for pseudolines is a weak pseudoline arrangement,[52] a family of curves having the same topological properties as lines[53] such that any two curves in the family either meet in a single crossing point or have no intersection.[52]
History
In a survey on arrangements, Pankaj Agarwal and Micha Sharir attribute the study of arrangements to Jakob Steiner, writing that "the first paper on this topic is perhaps" an 1826 paper of Steiner.[54] In this paper, Steiner proved bounds on the maximum number of features of different types that an arrangement may have.[55] After Steiner, the study of arrangements turned to higher-dimensional arrangements of hyperplanes, focusing on their overall structure and on single cells in these arrangements. The study of arrangements of lines, and of more complex features such as zones within these arrangements, returned to interest beginning in the 1980s as part of the foundations of computational geometry.[54]
See also
Configuration (geometry), an arrangement of lines and a set of points with all lines containing the same number of points and all points belonging to the same number of lines
Arrangement (space partition), a partition of the plane given by overlaid curves or of a higher dimensional space by overlaid surfaces, without requiring the curves or surfaces to be flat
Mathematical Bridge, a bridge in Cambridge, England whose beams form an arrangement of tangent lines to its arch
↑ Halperin & Sharir (2018, p.724). This source gives a formula for the number of cells of variable dimension in a hyperplane arrangement of variable dimension, which simplifies to in the case of vertices (cells of dimension 0) in an arrangement of dimension 2.
↑ This is the earliest proof cited by Borwein & Moser (1990, pp.114–116), but they write that the same proof was likely given "much earlier by others" (p. 114).
In geometry, every polyhedron is associated with a second dual structure, where the vertices of one correspond to the faces of the other, and the edges between pairs of vertices of one correspond to the edges between pairs of faces of the other. Such dual figures remain combinatorial or abstract polyhedra, but not all can also be constructed as geometric polyhedra. Starting with any given polyhedron, the dual of its dual is the original polyhedron.
In computational geometry, a Delaunay triangulation or Delone triangulation of a set of points in the plane subdivides their convex hull into triangles whose circumcircles do not contain any of the points. This maximizes the size of the smallest angle in any of the triangles, and tends to avoid sliver triangles.
Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.
A Euclidean minimum spanning tree of a finite set of points in the Euclidean plane or higher-dimensional Euclidean space connects the points by a system of line segments with the points as endpoints, minimizing the total length of the segments. In it, any two points can reach each other along a path through the line segments. It can be found as the minimum spanning tree of a complete graph with the points as vertices and the Euclidean distances between points as edge weights.
The Szemerédi–Trotter theorem is a mathematical result in the field of Discrete geometry. It asserts that given n points and m lines in the Euclidean plane, the number of incidences is
The Sylvester–Gallai theorem in geometry states that every finite set of points in the Euclidean plane has a line that passes through exactly two of the points or a line that passes through all of them. It is named after James Joseph Sylvester, who posed it as a problem in 1893, and Tibor Gallai, who published one of the first proofs of this theorem in 1944.
In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, it is a piecewise-linear Jordan curve consisting of finitely many line segments. These polygons include as special cases the convex polygons, star-shaped polygons, and monotone polygons.
A triangulation of a set of points in the Euclidean space is a simplicial complex that covers the convex hull of , and whose vertices belong to . In the plane, triangulations are made up of triangles, together with their edges and vertices. Some authors require that all the points of are vertices of its triangulations. In this case, a triangulation of a set of points in the plane can alternatively be defined as a maximal set of non-crossing edges between points of . In the plane, triangulations are special cases of planar straight-line graphs.
A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the -dimensional Euclidean space . Most texts use the term "polytope" for a bounded convex polytope, and the word "polyhedron" for the more general, possibly unbounded object. Others allow polytopes to be unbounded. The terms "bounded/unbounded convex polytope" will be used below whenever the boundedness is critical to the discussed issue. Yet other texts identify a convex polytope with its boundary.
In mathematics, particularly geometric graph theory, a unit distance graph is a graph formed from a collection of points in the Euclidean plane by connecting two points whenever the distance between them is exactly one. To distinguish these graphs from a broader definition that allows some non-adjacent pairs of vertices to be at distance one, they may also be called strict unit distance graphs or faithful unit distance graphs. As a hereditary family of graphs, they can be characterized by forbidden induced subgraphs. The unit distance graphs include the cactus graphs, the matchstick graphs and penny graphs, and the hypercube graphs. The generalized Petersen graphs are non-strict unit distance graphs.
In discrete geometry, a -set of a finite point set in the Euclidean plane is a subset of elements of that can be strictly separated from the remaining points by a line. More generally, in Euclidean space of higher dimensions, a -set of a finite point set is a subset of elements that can be separated from the remaining points by a hyperplane. In particular, when , the line or hyperplane that separates a -set from the rest of is a halving line or halving plane.
Planarity is a 2005 puzzle computer game by John Tantalo, based on a concept by Mary Radcliffe at Western Michigan University. The name comes from the concept of planar graphs in graph theory; these are graphs that can be embedded in the Euclidean plane so that no edges intersect. By Fáry's theorem, if a graph is planar, it can be drawn without crossings so that all of its edges are straight line segments. In the planarity game, the player is presented with a circular layout of a planar graph, with all the vertices placed on a single circle and with many crossings. The goal for the player is to eliminate all of the crossings and construct a straight-line embedding of the graph by moving the vertices one by one into better positions.
In polyhedral combinatorics, a branch of mathematics, Steinitz's theorem is a characterization of the undirected graphs formed by the edges and vertices of three-dimensional convex polyhedra: they are exactly the 3-vertex-connected planar graphs. That is, every convex polyhedron forms a 3-connected planar graph, and every 3-connected planar graph can be represented as the graph of a convex polyhedron. For this reason, the 3-connected planar graphs are also known as polyhedral graphs.
Kenneth Lee Clarkson is an American computer scientist known for his research in computational geometry. He is a researcher at the IBM Almaden Research Center, and co-editor-in-chief of Discrete and Computational Geometry and of the Journal of Computational Geometry.
In geometry, the moment curve is an algebraic curve in d-dimensional Euclidean space given by the set of points with Cartesian coordinates of the form
In mathematics, a topological graph is a representation of a graph in the plane, where the vertices of the graph are represented by distinct points and the edges by Jordan arcs joining the corresponding pairs of points. The points representing the vertices of a graph and the arcs representing its edges are called the vertices and the edges of the topological graph. It is usually assumed that any two edges of a topological graph cross a finite number of times, no edge passes through a vertex different from its endpoints, and no two edges touch each other. A topological graph is also called a drawing of a graph.
In computational geometry, a polygonalization of a finite set of points in the Euclidean plane is a simple polygon with the given points as its vertices. A polygonalization may also be called a polygonization, simple polygonalization, Hamiltonian polygon, non-crossing Hamiltonian cycle, or crossing-free straight-edge spanning cycle.
In three-dimensional hyperbolic geometry, an ideal polyhedron is a convex polyhedron all of whose vertices are ideal points, points "at infinity" rather than interior to three-dimensional hyperbolic space. It can be defined as the convex hull of a finite set of ideal points. An ideal polyhedron has ideal polygons as its faces, meeting along lines of the hyperbolic space.
In geometry, the zone theorem is a result that establishes the complexity of the zone of a line in an arrangement of lines.
Roberts's triangle theorem, a result in discrete geometry, states that every simple arrangement of lines has at least triangular faces. Thus, three lines form a triangle, four lines form at least two triangles, five lines form at least three triangles, etc. It is named after Samuel Roberts, a British mathematician who published it in 1889.
Aharoni, Y.; Halperin, D.; Hanniel, I.; Har-Peled, S.; Linhart, C. (1999), "On-line zone construction in arrangements of lines in the plane", in Vitter, Jeffrey S.; Zaroliagis, Christos D. (eds.), Algorithm Engineering: 3rd International Workshop, WAE'99, London, UK, July 19–21, 1999, Proceedings, Lecture Notes in Computer Science, vol.1668, Springer-Verlag, pp.139–153, CiteSeerX10.1.1.35.7681, doi:10.1007/3-540-48318-7_13, ISBN978-3-540-66427-7
Alon, N.; Győri, E. (1986), "The number of small semi-spaces of a finite set of points in the plane", Journal of Combinatorial Theory, Series A, 41: 154–157, doi:10.1016/0097-3165(86)90122-6
Bern, M. W.; Eppstein, D.; Plassman, P. E.; Yao, F. F. (1991), "Horizon theorems for lines and polygons", in Goodman, J. E.; Pollack, R.; Steiger, W. (eds.), Discrete and Computational Geometry: Papers from the DIMACS Special Year, DIMACS Ser. Discrete Math. and Theoretical Computer Science (6ed.), Amer. Math. Soc., pp.45–66, MR1143288
Bose, P.; Evans, W.; Kirkpatrick, D. G.; McAllister, M.; Snoeyink, J. (1996), "Approximating shortest paths in arrangements of lines", Proc. 8th Canadian Conf. Computational Geometry, pp.143–148
Dress, A.; Koolen, J. H.; Moulton, V. (2002), "On line arrangements in the hyperbolic plane", European Journal of Combinatorics, 23 (5): 549–557, doi:10.1006/eujc.2002.0582, MR1931939
Edelsbrunner, H. (1987), Algorithms in Combinatorial Geometry, EATCS Monographs in Theoretical Computer Science, Springer-Verlag, ISBN978-3-540-13722-1
Erdős, P.; Lovász, L.; Simmons, A.; Straus, E. G. (1973), "Dissection graphs of planar point sets", A Survey of Combinatorial Theory (Proc. Internat. Sympos., Colorado State Univ., Fort Collins, Colo., 1971), Amsterdam: North-Holland, pp.139–149, MR0363986
Halperin, D.; Sharir, M. (2018), "Arrangements", in Goodman, Jacob E.; O'Rourke, Joseph; Tóth, Csaba D. (eds.), Handbook of Discrete and Computational Geometry, Discrete Mathematics and its Applications (3rded.), Boca Raton, Florida: CRC Press, pp.723–762, ISBN978-1-4987-1139-5, MR3793131
Klee, R. (1938), Über die einfachen Konfigurationen der euklidischen und der projektiven Ebene, Dresden: Focken & Oltmanns
Leighton, F. T. (1983), Complexity Issues in VLSI: Optimal Layouts for the Shuffle–Exchange Graph and Other Networks, Foundations of Computing Series, Cambridge, MA: MIT Press
Levi, F. (1926), "Die Teilung der projektiven Ebene durch Gerade oder Pseudogerade", Ber. Math.-Phys. Kl. Sächs. Akad. Wiss. Leipzig, 78: 256–267
Likhtarov, Anton (2020), Shortest Paths in Line Arrangements (master's thesis), University of British Columbia, doi:10.14288/1.0389809
Lovász, L. (1971), "On the number of halving lines", Annales Universitatis Scientiarum Budapestinensis de Rolando Eőtvős Nominatae Sectio Mathematica, 14: 107–108
Martin, George E. (1996), The Foundations of Geometry and the Non-Euclidean Plane, Undergraduate Texts in Mathematics, Springer-Verlag, ISBN0-387-90694-0, MR1410263
Moreno, José Pedro; Prieto-Martínez, Luis Felipe (2021), "El problema de los triángulos de Kobon" [The Kobon triangles problem], La Gaceta de la Real Sociedad Matemática Española (in Spanish), 24 (1): 111–130, hdl:10486/705416, MR4225268
Strommer, T. O. (1977), "Triangles in arrangements of lines", Journal of Combinatorial Theory, Series A, 23 (3): 314–320, doi:10.1016/0097-3165(77)90022-X
Wang, Haitao (2022a), "A simple algorithm for computing the zone of a line in an arrangement of lines", in Bringmann, Karl; Chan, Timothy M. (eds.), 5th Symposium on Simplicity in Algorithms, SOSA@SODA 2022, Virtual Conference, January 10-11, 2022, SIAM, pp.79–86, arXiv:2111.08238, doi:10.1137/1.9781611977066.7
Wang, Haitao (2022b), "Constructing many faces in arrangements of lines and segments", in Naor, Joseph (Seffi); Buchbinder, Niv (eds.), Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9 - 12, 2022, SIAM, pp.3168–3180, arXiv:2110.08669, doi:10.1137/1.9781611977073.123
This page is based on this Wikipedia article Text is available under the CC BY-SA 4.0 license; additional terms may apply. Images, videos and audio are available under their respective licenses.