Chord diagram (mathematics)

Last updated
The 15 possible chord diagrams on six cyclically ordered points Chord diagrams K6 matchings.svg
The 15 possible chord diagrams on six cyclically ordered points

In mathematics, a chord diagram consists of a cyclic order on a set of objects, together with a one-to-one pairing (perfect matching) of those objects. Chord diagrams are conventionally visualized by arranging the objects in their order around a circle, and drawing the pairs of the matching as chords of the circle.

The number of different chord diagrams that may be given for a set of cyclically ordered objects is the double factorial . [1] There is a Catalan number of chord diagrams on a given ordered set in which no two chords cross each other. [2] The crossing pattern of chords in a chord diagram may be described by a circle graph, the intersection graph of the chords: it has a vertex for each chord and an edge for each two chords that cross. [3]

In knot theory, a chord diagram can be used to describe the sequence of crossings along the planar projection of a knot, with each point at which a crossing occurs paired with the point that crosses it. To fully describe the knot, the diagram should be annotated with an extra bit of information for each pair, indicating which point crosses over and which crosses under at that crossing. With this extra information, the chord diagram of a knot is called a Gauss diagram. [4] In the Gauss diagram of a knot, every chord crosses an even number of other chords, or equivalently each pair in the diagram connects a point in an even position of the cyclic order with a point in an odd position, and sometimes this is used as a defining condition of Gauss diagrams. [5]

In algebraic geometry, chord diagrams can be used to represent the singularities of algebraic plane curves. [6]

See also

Related Research Articles

In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross each other. Such a drawing is called a plane graph or planar embedding of the graph. A plane graph can be defined as a planar graph with a mapping from every node to a point on a plane, and from every edge to a plane curve on that plane, such that the extreme points of each curve are the points mapped from its end nodes, and all curves are disjoint except on their extreme points.

<span class="mw-page-title-main">Knot theory</span> Study of mathematical knots

In topology, knot theory is the study of mathematical knots. While inspired by knots which appear in daily life, such as those in shoelaces and rope, a mathematical knot differs in that the ends are joined so it cannot be undone, the simplest knot being a ring. In mathematical language, a knot is an embedding of a circle in 3-dimensional Euclidean space, . Two mathematical knots are equivalent if one can be transformed into the other via a deformation of upon itself ; these transformations correspond to manipulations of a knotted string that do not involve cutting it or passing it through itself.

<span class="mw-page-title-main">Petersen graph</span> Cubic graph with 10 vertices and 15 edges

In the mathematical field of graph theory, the Petersen graph is an undirected graph with 10 vertices and 15 edges. It is a small graph that serves as a useful example and counterexample for many problems in graph theory. The Petersen graph is named after Julius Petersen, who in 1898 constructed it to be the smallest bridgeless cubic graph with no three-edge-coloring.

<span class="mw-page-title-main">Knot (mathematics)</span> Embedding of the circle in three dimensional Euclidean space

In mathematics, a knot is an embedding of the circle into three-dimensional Euclidean space, R3. Often two knots are considered equivalent if they are ambient isotopic, that is, if there exists a continuous deformation of R3 which takes one knot to the other.

<span class="mw-page-title-main">Linking number</span> Numerical invariant that describes the linking of two closed curves in three-dimensional space

In mathematics, the linking number is a numerical invariant that describes the linking of two closed curves in three-dimensional space. Intuitively, the linking number represents the number of times that each curve winds around the other. In Euclidean space, the linking number is always an integer, but may be positive or negative depending on the orientation of the two curves.

<span class="mw-page-title-main">Borromean rings</span> Three linked but pairwise separated rings

In mathematics, the Borromean rings are three simple closed curves in three-dimensional space that are topologically linked and cannot be separated from each other, but that break apart into two unknotted and unlinked loops when any one of the three is cut or removed. Most commonly, these rings are drawn as three circles in the plane, in the pattern of a Venn diagram, alternatingly crossing over and under each other at the points where they cross. Other triples of curves are said to form the Borromean rings as long as they are topologically equivalent to the curves depicted in this drawing.

In the mathematical field of knot theory, the Jones polynomial is a knot polynomial discovered by Vaughan Jones in 1984. Specifically, it is an invariant of an oriented knot or link which assigns to each oriented knot or link a Laurent polynomial in the variable with integer coefficients.

<span class="mw-page-title-main">Hopf link</span> Simplest nontrivial knot link

In mathematical knot theory, the Hopf link is the simplest nontrivial link with more than one component. It consists of two circles linked together exactly once, and is named after Heinz Hopf.

<span class="mw-page-title-main">Dual graph</span> Graph representing faces of another graph

In the mathematical discipline of graph theory, the dual graph of a planar graph G is a graph that has a vertex for each face of G. The dual graph has an edge for each pair of faces in G that are separated from each other by an edge, and a self-loop when the same face appears on both sides of an edge. Thus, each edge e of G has a corresponding dual edge, whose endpoints are the dual vertices corresponding to the faces on either side of e. The definition of the dual depends on the choice of embedding of the graph G, so it is a property of plane graphs rather than planar graphs. For planar graphs generally, there may be multiple dual graphs, depending on the choice of planar embedding of the graph.

In the mathematical theory of knots, a finite type invariant, or Vassiliev invariant, is a knot invariant that can be extended to an invariant of certain singular knots that vanishes on singular knots with m + 1 singularities and does not vanish on some singular knot with 'm' singularities. It is then said to be of type or order m.

<span class="mw-page-title-main">Book embedding</span> Graph layout on multiple half-planes

In graph theory, a book embedding is a generalization of planar embedding of a graph to embeddings in a book, a collection of half-planes all having the same line as their boundary. Usually, the vertices of the graph are required to lie on this boundary line, called the spine, and the edges are required to stay within a single half-plane. The book thickness of a graph is the smallest possible number of half-planes for any book embedding of the graph. Book thickness is also called pagenumber, stacknumber or fixed outerthickness. Book embeddings have also been used to define several other graph invariants including the pagewidth and book crossing number.

<span class="mw-page-title-main">Dowker–Thistlethwaite notation</span> Mathematical notation for describing the structure of knots

In the mathematical field of knot theory, the Dowker–Thistlethwaite (DT) notation or code, for a knot is a sequence of even integers. The notation is named after Clifford Hugh Dowker and Morwen Thistlethwaite, who refined a notation originally due to Peter Guthrie Tait.

In knot theory, a virtual knot is a generalization of knots in 3-dimensional Euclidean space, R3, to knots in thickened surfaces modulo an equivalence relation called stabilization/destabilization. Here is required to be closed and oriented. Virtual knots were first introduced by Kauffman (1999).

<span class="mw-page-title-main">Crossing number (graph theory)</span> Fewest edge crossings in drawing of a graph

In graph theory, the crossing numbercr(G) of a graph G is the lowest number of edge crossings of a plane drawing of the graph G. For instance, a graph is planar if and only if its crossing number is zero. Determining the crossing number continues to be of great importance in graph drawing, as user studies have shown that drawing graphs with few crossings makes it easier for people to understand the drawing.

In the mathematical theory of knots, the Kontsevich invariant, also known as the Kontsevich integral of an oriented framed link, is a universal Vassiliev invariant in the sense that any coefficient of the Kontsevich invariant is of a finite type, and conversely any finite type invariant can be presented as a linear combination of such coefficients. It was defined by Maxim Kontsevich.

<span class="mw-page-title-main">Ménage problem</span> Assignment problem in combinatorial mathematics

In combinatorial mathematics, the ménage problem or problème des ménages asks for the number of different ways in which it is possible to seat a set of male-female couples at a round dining table so that men and women alternate and nobody sits next to his or her partner. This problem was formulated in 1891 by Édouard Lucas and independently, a few years earlier, by Peter Guthrie Tait in connection with knot theory. For a number of couples equal to 3, 4, 5, ... the number of seating arrangements is

<span class="mw-page-title-main">Tangle (mathematics)</span>

In mathematics, a tangle is generally one of two related concepts:

<span class="mw-page-title-main">Petal projection</span> Form of knot diagram

In knot theory, a petal projection of a knot is a knot diagram with a single crossing, at which an odd number of non-nested arcs ("petals") all meet. Because the above-below relation between the branches of a knot at this crossing point is not apparent from the appearance of the diagram, it must be specified separately, as a permutation describing the top-to-bottom ordering of the branches.

References

  1. Dale, M. R. T.; Moon, J. W. (1993), "The permuted analogues of three Catalan sets", Journal of Statistical Planning and Inference , 34 (1): 75–87, doi:10.1016/0378-3758(93)90035-5, MR   1209991
  2. Flajolet, Philippe; Noy, Marc (2000), "Analytic combinatorics of chord diagrams" (PDF), in Krob, Daniel; Mikhalev, Alexander A.; Mikhalev, Alexander V. (eds.), Formal Power Series and Algebraic Combinatorics: 12th International Conference, FPSAC'00, Moscow, Russia, June 2000, Proceedings, Berlin: Springer, pp. 191–201, doi:10.1007/978-3-662-04166-6_17, ISBN   978-3-642-08662-5, MR   1798213, S2CID   118791613
  3. de Fraysseix, Hubert (1984), "A characterization of circle graphs", European Journal of Combinatorics , 5 (3): 223–238, doi: 10.1016/S0195-6698(84)80005-0 , MR   0765628
  4. Polyak, Michael; Viro, Oleg (1994), "Gauss diagram formulas for Vassiliev invariants", International Mathematics Research Notices , 1994 (11): 445–453, doi: 10.1155/S1073792894000486 , MR   1316972
  5. Khan, Abdullah; Lisitsa, Alexei; Vernitski, Alexei (2021), "Gauss-Lintel, an algorithm suite for exploring chord diagrams", in Kamareddine, Fairouz; Coen, Claudio Sacerdoti (eds.), Intelligent Computer Mathematics: 14th International Conference, CICM 2021, Timisoara, Romania, July 26-31, 2021, Proceedings, Lecture Notes in Computer Science, vol. 12833, Berlin: Springer, pp. 197–202, doi:10.1007/978-3-030-81097-9_16, ISBN   978-3-030-81096-2, S2CID   236150713
  6. Ghys, Étienne (2017), A singular mathematical promenade, Lyon: ENS Éditions, arXiv: 1612.06373 , ISBN   978-2-84788-939-0, MR   3702027