Complete (complexity)

Last updated

In computational complexity theory, a computational problem is complete for a complexity class if it is, in a technical sense, among the "hardest" (or "most expressive") problems in the complexity class.

More formally, a problem p is called hard for a complexity class C under a given type of reduction if there exists a reduction (of the given type) from any problem in C to p. If a problem is both hard for the class and a member of the class, it is complete for that class (for that type of reduction).

A problem that is complete for a class C is said to be C-complete, and the class of all problems complete for C is denoted C-complete. The first complete class to be defined and the most well known is NP-complete, a class that contains many difficult-to-solve problems that arise in practice. Similarly, a problem hard for a class C is called C-hard, e.g. NP-hard.

Normally, it is assumed that the reduction in question does not have higher computational complexity than the class itself. Therefore, it may be said that if a C-complete problem has a "computationally easy" solution, then all problems in "C" have an "easy" solution.

Generally, complexity classes that have a recursive enumeration have known complete problems, whereas classes that lack a recursive enumeration have none. For example, NP, co-NP, PLS, PPA all have known natural complete problems.

There are classes without complete problems. For example, Sipser showed that there is a language M such that BPPM (BPP with oracle M) has no complete problems. [1]

Related Research Articles

The P versus NP problem is a major unsolved problem in computer science. It asks whether every problem whose solution can be quickly verified can also be solved quickly.

Computational complexity theory focuses on classifying computational problems according to their resource usage, and relating these classes to each other. A computational problem is a task solved by a computer. A computation problem is solvable by mechanical application of mathematical steps, such as an algorithm.

Decision problem Yes/no problem in computer science

In computability theory and computational complexity theory, a decision problem is a problem that can be posed as a yes–no question of the input values. An example of a decision problem is deciding whether a given natural number is prime. Another is the problem "given two numbers x and y, does x evenly divide y?". The answer is either 'yes' or 'no' depending upon the values of x and y. A method for solving a decision problem, given in the form of an algorithm, is called a decision procedure for that problem. A decision procedure for the decision problem "given two numbers x and y, does x evenly divide y?" would give the steps for determining whether x evenly divides y. One such algorithm is long division. If the remainder is zero the answer is 'yes', otherwise it is 'no'. A decision problem which can be solved by an algorithm is called decidable.

NP (complexity) Complexity class used to classify decision problems

In computational complexity theory, NP is a complexity class used to classify decision problems. NP is the set of decision problems for which the problem instances, where the answer is "yes", have proofs verifiable in polynomial time by a deterministic Turing machine, or alternatively the set of problems that can be solved in polynomial time by a nondeterministic Turing machine.

In complexity theory and computability theory, an oracle machine is an abstract machine used to study decision problems. It can be visualized as a Turing machine with a black box, called an oracle, which is able to solve certain problems in a single operation. The problem can be of any complexity class. Even undecidable problems, such as the halting problem, can be used.

The #P-complete problems form a complexity class in computational complexity theory. The problems in this complexity class are defined by having the following two properties:

Theory of computation Academic subfield of computer science

In theoretical computer science and mathematics, the theory of computation is the branch that deals with what problems can be solved on a model of computation, using an algorithm, how efficiently they can be solved or to what degree. The field is divided into three major branches: automata theory and formal languages, computability theory, and computational complexity theory, which are linked by the question: "What are the fundamental capabilities and limitations of computers?".

In computational complexity theory, PSPACE is the set of all decision problems that can be solved by a Turing machine using a polynomial amount of space.

NP-hardness Complexity class

In computational complexity theory, NP-hardness is the defining property of a class of problems that are informally "at least as hard as the hardest problems in NP". A simple example of an NP-hard problem is the subset sum problem.

In computational complexity theory, a decision problem is P-complete if it is in P and every problem in P can be reduced to it by an appropriate reduction.

In computational complexity theory, a polynomial-time reduction is a method for solving one problem using another. One shows that if a hypothetical subroutine solving the second problem exists, then the first problem can be solved by transforming or reducing it to inputs for the second problem and calling the subroutine one or more times. If both the time required to transform the first problem to the second, and the number of times the subroutine is called is polynomial, then the first problem is polynomial-time reducible to the second.

In computability theory and computational complexity theory, a many-one reduction is a reduction which converts instances of one decision problem into instances of a second decision problem where the instance reduced to is in the language if the initial instance was in its language and is not in the language if the initial instance was not in its language . Thus if we can decide whether instances are in the language , we can decide whether instances are in its language by applying the reduction and solving . Thus, reductions can be used to measure the relative computational difficulty of two problems. It is said that reduces to if, in layman's terms is harder to solve than . That is to say, any algorithm that solves can also be used as part of a program that solves .

Complexity class Set of problems in computational complexity theory

In computational complexity theory, a complexity class is a set of computational problems of related resource-based complexity. The two most commonly analyzed resources are time and memory.

Reduction (complexity)

In computability theory and computational complexity theory, a reduction is an algorithm for transforming one problem into another problem. A sufficiently efficient reduction from one problem to another may be used to show that the second problem is at least as difficult as the first.

In computational complexity theory, L is the complexity class containing decision problems that can be solved by a deterministic Turing machine using a logarithmic amount of writable memory space. Formally, the Turing machine has two tapes, one of which encodes the input and can only be read, whereas the other tape has logarithmic size but can be read as well as written. Logarithmic space is sufficient to hold a constant number of pointers into the input and a logarithmic number of boolean flags, and many basic logspace algorithms use the memory in this way.

In computability theory and computational complexity theory, RE is the class of decision problems for which a 'yes' answer can be verified by a Turing machine in a finite amount of time. Informally, it means that if the answer to a problem instance is 'yes', then there is some procedure that takes finite time to determine this, and this procedure never falsely reports 'yes' when the true answer is 'no'. However, when the true answer is 'no', the procedure is not required to halt; it may go into an "infinite loop" for some 'no' cases. Such a procedure is sometimes called a semi-algorithm, to distinguish it from an algorithm, defined as a complete solution to a decision problem.

Structural complexity theory

In computational complexity theory of computer science, the structural complexity theory or simply structural complexity is the study of complexity classes, rather than computational complexity of individual problems and algorithms. It involves the research of both internal structures of various complexity classes and the relations between different complexity classes.

In computational complexity theory, the language TQBF is a formal language consisting of the true quantified Boolean formulas. A (fully) quantified Boolean formula is a formula in quantified propositional logic where every variable is quantified, using either existential or universal quantifiers, at the beginning of the sentence. Such a formula is equivalent to either true or false. If such a formula evaluates to true, then that formula is in the language TQBF. It is also known as QSAT.

In mathematics, logic and computer science, a formal language is called recursive if it is a recursive subset of the set of all possible finite sequences over the alphabet of the language. Equivalently, a formal language is recursive if there exists a total Turing machine that, when given a finite sequence of symbols as input, accepts it if it belongs to the language and rejects it otherwise. Recursive languages are also called decidable.

NP-completeness Complexity class

In computational complexity theory, a problem is NP-complete when:

  1. it is a problem for which the correctness of each solution can be verified quickly and a brute-force search algorithm can find a solution by trying all possible solutions.
  2. the problem can be used to simulate every other problem for which we can verify quickly that a solution is correct. In this sense, NP-complete problems are the hardest of the problems to which solutions can be verified quickly. If we could find solutions of some NP-complete problem quickly, we could quickly find the solutions of every other problem to which a given solution can be easily verified.

References

  1. Sipser, Michael (1982). "On relativization and the existence of complete sets". Automata, Languages and Programming. Lecture Notes in Computer Science. Vol. 140. pp. 523–531. doi:10.1007/BFb0012797. ISBN   978-3-540-11576-2.