PPA (complexity)

Last updated

In computational complexity theory, PPA is a complexity class, standing for "Polynomial Parity Argument" (on a graph). Introduced by Christos Papadimitriou in 1994 [1] (page 528), PPA is a subclass of TFNP. It is a class of search problems that can be shown to be total by an application of the handshaking lemma: any undirected graph that has a vertex whose degree is an odd number must have some other vertex whose degree is an odd number. This observation means that if we are given a graph and an odd-degree vertex, and we are asked to find some other odd-degree vertex, then we are searching for something that is guaranteed to exist (so, we have a total search problem).

Contents

Definition

PPA is defined as follows. Suppose we have a graph on whose vertices are -bit binary strings, and the graph is represented by a polynomial-sized circuit that takes a vertex as input and outputs its neighbors. (Note that this allows us to represent an exponentially-large graph on which we can efficiently perform local exploration.) Suppose furthermore that a specific vertex (say the all-zeroes vector) has an odd number of neighbors. We are required to find another odd-degree vertex. Note that this problem is in NP—given a solution it may be verified using the circuit that the solution is correct. A function computation problem belongs to PPA if it admits a polynomial-time reduction to this graph search problem. A problem is complete for the class PPA if in addition, this graph search problem is reducible to that problem.

PPAD is defined in a similar way to PPA, except that it is defined on directed graphs. PPAD is a subclass of PPA. This is because the corresponding problem that defines PPAD, known as END OF THE LINE, can be reduced (in a straightforward way) to the above search for an additional odd-degree vertex (essentially, just by ignoring the directions of the edges in END OF THE LINE).

Examples

Related Research Articles

In computational complexity theory, the class NC (for "Nick's Class") is the set of decision problems decidable in polylogarithmic time on a parallel computer with a polynomial number of processors. In other words, a problem with input size n is in NC if there exist constants c and k such that it can be solved in time O((log n)c) using O(nk) parallel processors. Stephen Cook coined the name "Nick's class" after Nick Pippenger, who had done extensive research on circuits with polylogarithmic depth and polynomial size.

In computational complexity theory, the complexity class #P (pronounced "sharp P" or, sometimes "number P" or "hash P") is the set of the counting problems associated with the decision problems in the set NP. More formally, #P is the class of function problems of the form "compute f(x)", where f is the number of accepting paths of a nondeterministic Turing machine running in polynomial time. Unlike most well-known complexity classes, it is not a class of decision problems but a class of function problems. The most difficult, representative problems of this class are #P-complete.

In computational complexity theory, the complexity class EXPTIME (sometimes called EXP or DEXPTIME) is the set of all decision problems that are solvable by a deterministic Turing machine in exponential time, i.e., in O(2p(n)) time, where p(n) is a polynomial function of n.

The Hamiltonian path problem is a topic discussed in the fields of complexity theory and graph theory. It decides if a directed or undirected graph, G, contains a Hamiltonian path, a path that visits every vertex in the graph exactly once. The problem may specify the start and end of the path, in which case the starting vertex s and ending vertex t must be identified.

<span class="mw-page-title-main">Sperner's lemma</span> Theorem on triangulation graph colorings

In mathematics, Sperner's lemma is a combinatorial result on colorings of triangulations, analogous to the Brouwer fixed point theorem, which is equivalent to it. It states that every Sperner coloring of a triangulation of an -dimensional simplex contains a cell whose vertices all have different colors.

<span class="mw-page-title-main">Perfect graph</span> Graph with tight clique-coloring relation

In graph theory, a perfect graph is a graph in which the chromatic number equals the size of the maximum clique, both in the graph itself and in every induced subgraph. In all graphs, the chromatic number is greater than or equal to the size of the maximum clique, but they can be far apart. A graph is perfect when these numbers are equal, and remain equal after the deletion of arbitrary subsets of vertices.

In computational complexity theory, L is the complexity class containing decision problems that can be solved by a deterministic Turing machine using a logarithmic amount of writable memory space. Formally, the Turing machine has two tapes, one of which encodes the input and can only be read, whereas the other tape has logarithmic size but can be read as well as written. Logarithmic space is sufficient to hold a constant number of pointers into the input and a logarithmic number of boolean flags, and many basic logspace algorithms use the memory in this way.

In computational complexity theory, SL is the complexity class of problems log-space reducible to USTCON, which is the problem of determining whether there exists a path between two vertices in an undirected graph, otherwise described as the problem of determining whether two vertices are in the same connected component. This problem is also called the undirected reachability problem. It does not matter whether many-one reducibility or Turing reducibility is used. Although originally described in terms of symmetric Turing machines, that equivalent formulation is very complex, and the reducibility definition is what is used in practice.

In computational complexity theory, the complexity class ⊕P is the class of decision problems solvable by a nondeterministic Turing machine in polynomial time, where the acceptance condition is that the number of accepting computation paths is odd. An example of a ⊕P problem is "does a given graph have an odd number of perfect matchings?" The class was defined by Papadimitriou and Zachos in 1983.

In computational complexity, problems that are in the complexity class NP but are neither in the class P nor NP-complete are called NP-intermediate, and the class of such problems is called NPI. Ladner's theorem, shown in 1975 by Richard E. Ladner, is a result asserting that, if P ≠ NP, then NPI is not empty; that is, NP contains problems that are neither in P nor NP-complete. Since it is also true that if NPI problems exist, then P ≠ NP, it follows that P = NP if and only if NPI is empty.

In computational complexity theory, the complexity class TFNP is the class of total function problems which can be solved in nondeterministic polynomial time. That is, it is the class of function problems that are guaranteed to have an answer, and this answer can be checked in polynomial time, or equivalently it is the subset of FNP where a solution is guaranteed to exist. The abbreviation TFNP stands for "Total Function Nondeterministic Polynomial".

In computational complexity theory, Polynomial Local Search (PLS) is a complexity class that models the difficulty of finding a locally optimal solution to an optimization problem. The main characteristics of problems that lie in PLS are that the cost of a solution can be calculated in polynomial time and the neighborhood of a solution can be searched in polynomial time. Therefore it is possible to verify whether or not a solution is a local optimum in polynomial time. Furthermore, depending on the problem and the algorithm that is used for solving the problem, it might be faster to find a local optimum instead of a global optimum.

In computer science, PPAD is a complexity class introduced by Christos Papadimitriou in 1994. PPAD is a subclass of TFNP based on functions that can be shown to be total by a parity argument. The class attracted significant attention in the field of algorithmic game theory because it contains the problem of computing a Nash equilibrium: this problem was shown to be complete for PPAD by Daskalakis, Goldberg and Papadimitriou with at least 3 players and later extended by Chen and Deng to 2 players.

<span class="mw-page-title-main">Handshaking lemma</span> Every graph has evenly many odd vertices

In graph theory, a branch of mathematics, the handshaking lemma is the statement that, in every finite undirected graph, the number of vertices that touch an odd number of edges is even. For example, if there is a party of people who shake hands, the number of people who shake an odd number of other people's hands is even. The handshaking lemma is a consequence of the degree sum formula, also sometimes called the handshaking lemma, according to which the sum of the degrees equals twice the number of edges in the graph. Both results were proven by Leonhard Euler in his famous paper on the Seven Bridges of Königsberg that began the study of graph theory.

<span class="mw-page-title-main">3-dimensional matching</span>

In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices.

In the study of graph algorithms, an implicit graph representation is a graph whose vertices or edges are not represented as explicit objects in a computer's memory, but rather are determined algorithmically from some other input, for example a computable function.

In computational complexity theory, the complexity class PPP is a subclass of TFNP. It is the class of search problems that can be shown to be total by an application of the pigeonhole principle. Christos Papadimitriou introduced it in the same paper that introduced PPAD and PPA. PPP contains both PPAD and PWPP as subclasses. These complexity classes are of particular interest in cryptography because they are strongly related to cryptographic primitives such as one-way permutations and collision-resistant hash functions.

In algorithmic game theory, a succinct game or a succinctly representable game is a game which may be represented in a size much smaller than its normal form representation. Without placing constraints on player utilities, describing a game of players, each facing strategies, requires listing utility values. Even trivial algorithms are capable of finding a Nash equilibrium in a time polynomial in the length of such a large input. A succinct game is of polynomial type if in a game represented by a string of length n the number of players, as well as the number of strategies of each player, is bounded by a polynomial in n.

Fisher market is an economic model attributed to Irving Fisher. It has the following ingredients:

References

  1. Christos Papadimitriou (1994). "On the complexity of the parity argument and other inefficient proofs of existence" (PDF). Journal of Computer and System Sciences . 48 (3): 498–532. doi:10.1016/S0022-0000(05)80063-7. Archived from the original (PDF) on 2016-03-04. Retrieved 2009-12-19.
  2. Michelangelo Grigni (1995). "A Sperner Lemma Complete for PPA". Information Processing Letters . 77 (5–6): 255–259. CiteSeerX   10.1.1.63.9463 . doi:10.1016/S0020-0190(00)00152-6.
  3. A. Filos-Ratsikas; P.W. Goldberg (2018). "Consensus-Halving is PPA-Complete". Proc. of 50th Symposium on Theory of Computing . pp. 51–64. arXiv: 1711.04503 . doi:10.1145/3188745.3188880.
  4. E. Jeřábek (2016). "Integer Factoring and Modular Square Roots". Journal of Computer and System Sciences . 82 (2): 380–394. arXiv: 1207.5220 . doi:10.1016/j.jcss.2015.08.001.