In group theory and geometry, a **reflection group** is a discrete group which is generated by a set of reflections of a finite-dimensional Euclidean space. The symmetry group of a regular polytope or of a tiling of the Euclidean space by congruent copies of a regular polytope is necessarily a reflection group. Reflection groups also include Weyl groups and crystallographic Coxeter groups. While the orthogonal group is generated by reflections (by the Cartan–Dieudonné theorem), it is a continuous group (indeed, Lie group), not a discrete group, and is generally considered separately.

Let *E* be a finite-dimensional Euclidean space. A **finite reflection group** is a subgroup of the general linear group of *E* which is generated by a set of orthogonal reflections across hyperplanes passing through the origin. An **affine reflection group** is a discrete subgroup of the affine group of *E* that is generated by a set of *affine reflections* of *E* (without the requirement that the reflection hyperplanes pass through the origin).

The corresponding notions can be defined over other fields, leading to ** complex reflection groups ** and analogues of reflection groups over a finite field.

In two dimensions, the finite reflection groups are the dihedral groups, which are generated by reflection in two lines that form an angle of and correspond to the Coxeter diagram Conversely, the cyclic point groups in two dimensions are *not* generated by reflections, and indeed contain no reflections – they are however subgroups of index 2 of a dihedral group.

Infinite reflection groups include the frieze groups and and the wallpaper groups , , , and . If the angle between two lines is an irrational multiple of pi, the group generated by reflections in these lines is infinite and non-discrete, hence, it is not a reflection group.

Finite reflection groups are the point groups *C _{nv}*,

A reflection group *W* admits a presentation of a special kind discovered and studied by H. S. M. Coxeter.^{ [1] } The reflections in the faces of a fixed fundamental "chamber" are generators *r*_{i} of *W* of order 2. All relations between them formally follow from the relations

expressing the fact that the product of the reflections *r*_{i} and *r*_{j} in two hyperplanes *H*_{i} and *H*_{j} meeting at an angle is a rotation by the angle fixing the subspace *H*_{i} ∩ *H*_{j} of codimension 2. Thus, viewed as an abstract group, every reflection group is a Coxeter group.

When working over finite fields, one defines a "reflection" as a map that fixes a hyperplane (otherwise for example there would be no reflections in characteristic 2, as so reflections are the identity).^{[ citation needed ]} Geometrically, this amounts to including shears in a hyperplane. Reflection groups over finite fields of characteristic not 2 were classified by Zalesskiĭ & Serežkin (1981).

Discrete isometry groups of more general Riemannian manifolds generated by reflections have also been considered. The most important class arises from Riemannian symmetric spaces of rank 1: the n-sphere *S*^{n}, corresponding to finite reflection groups, the Euclidean space **R**^{n}, corresponding to affine reflection groups, and the hyperbolic space *H*^{n}, where the corresponding groups are called **hyperbolic reflection groups**. In two dimensions, triangle groups include reflection groups of all three kinds.

- Hyperplane arrangement
- Chevalley–Shephard–Todd theorem
- Reflection groups are related to kaleidoscopes.
^{ [2] }

**Euclidean space** is the fundamental space of classical geometry. Originally, it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean spaces of any nonnegative integer dimension, including the three-dimensional space and the *Euclidean plane*. It was introduced by the Ancient Greek mathematician Euclid of Alexandria, and the qualifier *Euclidean* is used to distinguish it from other spaces that were later discovered in physics and modern mathematics.

In mathematics, the **orthogonal group** in dimension *n*, denoted O(*n*), is the group of distance-preserving transformations of a Euclidean space of dimension *n* that preserve a fixed point, where the group operation is given by composing transformations. The orthogonal group is sometimes called the **general orthogonal group**, by analogy with the general linear group. Equivalently, it is the group of *n*×*n* orthogonal matrices, where the group operation is given by matrix multiplication. The orthogonal group is an algebraic group and a Lie group. It is compact.

In mathematics, a **building** is a combinatorial and geometric structure which simultaneously generalizes certain aspects of flag manifolds, finite projective planes, and Riemannian symmetric spaces. Buildings were initially introduced by Jacques Tits as a means to understand the structure of exceptional groups of Lie type. The more specialized theory of Bruhat–Tits buildings plays a role in the study of p-adic Lie groups analogous to that of the theory of symmetric spaces in the theory of Lie groups.

In the mathematical disciplines of topology and geometry, an **orbifold** is a generalization of a manifold. Roughly speaking, an orbifold is a topological space which is locally a finite group quotient of a Euclidean space.

In mathematics, a **reflection** is a mapping from a Euclidean space to itself that is an isometry with a hyperplane as a set of fixed points; this set is called the axis or plane of reflection. The image of a figure by a reflection is its mirror image in the axis or plane of reflection. For example the mirror image of the small Latin letter **p** for a reflection with respect to a vertical axis would look like **q**. Its image by reflection in a horizontal axis would look like **b**. A reflection is an involution: when applied twice in succession, every point returns to its original location, and every geometrical object is restored to its original state.

In mathematics, in particular the theory of Lie algebras, the **Weyl group** of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections through the hyperplanes orthogonal to the roots, and as such is a finite reflection group. In fact it turns out that *most* finite reflection groups are Weyl groups. Abstractly, Weyl groups are finite Coxeter groups, and are important examples of these.

In mathematics, a **Coxeter group**, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups, and finite Coxeter groups were classified in 1935.

In mathematics, the **affine group** or **general affine group** of any affine space over a field K is the group of all invertible affine transformations from the space into itself.

In the mathematical area of group theory, **Artin groups**, also known as **Artin–Tits groups** or **generalized braid groups**, are a family of infinite discrete groups defined by simple presentations. They are closely related with Coxeter groups. Examples are free groups, free abelian groups, braid groups, and right-angled Artin–Tits groups, among others.

In geometry, a **Schwarz triangle**, named after Hermann Schwarz, is a spherical triangle that can be used to tile a sphere, possibly overlapping, through reflections in its edges. They were classified in.

In mathematics, a **triangle group** is a group that can be realized geometrically by sequences of reflections across the sides of a triangle. The triangle can be an ordinary Euclidean triangle, a triangle on the sphere, or a hyperbolic triangle. Each triangle group is the symmetry group of a tiling of the Euclidean plane, the sphere, or the hyperbolic plane by congruent triangles called Möbius triangles, each one a fundamental domain for the action.

In geometry, a **point group in three dimensions** is an isometry group in three dimensions that leaves the origin fixed, or correspondingly, an isometry group of a sphere. It is a subgroup of the orthogonal group O(3), the group of all isometries that leave the origin fixed, or correspondingly, the group of orthogonal matrices. O(3) itself is a subgroup of the Euclidean group E(3) of all isometries.

In geometry, a **Coxeter–Dynkin diagram** is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors. It describes a kaleidoscopic construction: each graph "node" represents a mirror and the label attached to a branch encodes the dihedral angle order between two mirrors, that is, the amount by which the angle between the reflective planes can be multiplied by to get 180 degrees. An unlabeled branch implicitly represents order-3.

In mathematics, a **complex reflection group** is a finite group acting on a finite-dimensional complex vector space that is generated by **complex reflections**: non-trivial elements that fix a complex hyperplane pointwise.

In geometry, a **point reflection** or **inversion in a point** is a type of isometry of Euclidean space. An object that is invariant under a point reflection is said to possess **point symmetry**; if it is invariant under point reflection through its center, it is said to possess **central symmetry** or to be **centrally symmetric.**

In the theory of Riemann surfaces and hyperbolic geometry, the triangle group (2,3,7) is particularly important. This importance stems from its connection to Hurwitz surfaces, namely Riemann surfaces of genus *g* with the largest possible order, 84(*g* − 1), of its automorphism group.

In geometry, **Coxeter notation** is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson.

In mathematics, the **Coxeter complex**, named after H. S. M. Coxeter, is a geometrical structure associated to a Coxeter group. Coxeter complexes are the basic objects that allow the construction of buildings; they form the apartments of a building.

A **Coxeter decomposition** of a polygon is a decomposition into a finite number of polygons in which any two sharing a side are reflections of each other along that side. Hyperbolic polygons are the analogues of Euclidean polygons in hyperbolic geometry. A hyperbolic *n*-gon is an area bounded by *n* segments, rays, or entire straight lines. The standard model for this geometry is the Poincaré disk model. A major difference between Euclidean and hyperbolic polygons is that the sum of internal angles of a hyperbolic polygon is not the same as Euclidean polygons. In particular, the sum of the angles of a hyperbolic triangle is less than 180 degrees.

The **affine symmetric groups** are a family of mathematical structures that describe the symmetries of the number line and the regular triangular tiling of the plane, as well as related higher-dimensional objects. Each one is an infinite extension of a finite symmetric group, the group of permutations (rearrangements) of a finite set. In addition to their geometric description, the affine symmetric groups may be defined as collections of permutations of the integers that are periodic in a certain sense, or in purely algebraic terms as a group with certain generators and relations. They are studied as part of the fields of combinatorics and representation theory.

- ↑ Coxeter ( 1934 , 1935 )
- ↑ Goodman (2004).

- Coxeter, H.S.M. (1934), "Discrete groups generated by reflections",
*Ann. of Math.*,**35**(3): 588–621, CiteSeerX 10.1.1.128.471 , doi:10.2307/1968753, JSTOR 1968753 - Coxeter, H.S.M. (1935), "The complete enumeration of finite groups of the form ",
*J. London Math. Soc.*,**10**: 21–25, doi:10.1112/jlms/s1-10.37.21 - Goodman, Roe (April 2004), "The Mathematics of Mirrors and Kaleidoscopes" (PDF),
*American Mathematical Monthly*,**111**(4): 281–298, CiteSeerX 10.1.1.127.6227 , doi:10.2307/4145238, JSTOR 4145238 - Zalesskiĭ, Aleksandr E.; Serežkin, V N (1981), "Finite Linear Groups Generated by Reflections",
*Math. USSR Izv.*,**17**(3): 477–503, Bibcode:1981IzMat..17..477Z, doi:10.1070/IM1981v017n03ABEH001369

- Borovik, Alexandre; Borovik, Anna (2010),
*Mirrors and reflections : the geometry of finite reflection groups*, New York: Springer, ISBN 9780387790664 - Grove, L. C.; Benson, C. T. (1985),
*Finite reflection groups*, Graduate Texts in Mathematics,**99**(2nd ed.), Springer-Verlag, New York, doi:10.1007/978-1-4757-1869-0, ISBN 0-387-96082-1, MR 0777684 - Humphreys, James E. (1992),
*Reflection groups and Coxeter groups*, Cambridge University Press, ISBN 978-0-521-43613-7

- Media related to Reflection groups at Wikimedia Commons
- "Reflection group",
*Encyclopedia of Mathematics*, EMS Press, 2001 [1994]

This page is based on this Wikipedia article

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.

Text is available under the CC BY-SA 4.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.