Mirrors and Reflections

Last updated

Mirrors and Reflections: The Geometry of Finite Reflection Groups is an undergraduate-level textbook on the geometry of reflection groups. It was written by Alexandre V. Borovik and Anna Borovik and published in 2009 by Springer in their Universitext book series. The Basic Library List Committee of the Mathematical Association of America has recommended its inclusion in undergraduate mathematics libraries. [1]

Contents

Topics

Mirrors and Reflections is divided into five major parts, with two appendices. The first part provides background material in affine geometric spaces, [2] geometric transformations, [3] , arrangements of hyperplanes, [1] , and polyhedral cones. [3] The second part introduces the definitions of reflection systems and reflection groups, the special case of dihedral groups, and root systems. [2] [3]

Part III of the book concerns Coxeter complexes, and uses them as the basis for some group theory of reflection groups, including their length functions and parabolic subgroups. [2] [3] Part IV, "the highlight in this book", proves the classification of finite reflection groups and of root systems. [3] The final part of the book studies in more detail and through more elementary methods the three-dimensional finite reflection groups and the symmetries of the regular icosahedron. Appendices provide suggestions for mathematical visualization, and list hints and solutions for exercises. [2]

Audience and reception

Mirrors and Reflections is aimed at undergraduate mathematics students, and uses an intuitive and heavily visual approach suitable for that level. [1] [2] [3] its readers are expected to already have a solid background in linear algebra and some group theory. [1] [2] Reviewer Gizem Karaali recommends the book, both as a textbook for a "capstone" undergraduate course, and as individual reading for students interested in this topic. [1]

There are several other standard textbooks on reflection groups, including Groupes et algèbres de Lie, Chapitres 4, 5 et 6 (Bourbaki, 1968), Finite Reflection Groups (L. C. Grove and C. T. Benson, 1985), and Reflection Groups and Coxeter Groups (James E. Humphreys, 1990). However, these take a more algebraic and less geometric view of the subject than Mirrors and Reflections, and are less accessible to undergraduates. [1]

Related Research Articles

In mathematics, a building is a combinatorial and geometric structure which simultaneously generalizes certain aspects of flag manifolds, finite projective planes, and Riemannian symmetric spaces. Buildings were initially introduced by Jacques Tits as a means to understand the structure of isotropic reductive linear algebraic groups over arbitrary fields. The more specialized theory of Bruhat–Tits buildings plays a role in the study of p-adic Lie groups analogous to that of the theory of symmetric spaces in the theory of Lie groups.

<span class="mw-page-title-main">Dynkin diagram</span> Pictorial representation of symmetry

In the mathematical field of Lie theory, a Dynkin diagram, named for Eugene Dynkin, is a type of graph with some edges doubled or tripled. Dynkin diagrams arise in the classification of semisimple Lie algebras over algebraically closed fields, in the classification of Weyl groups and other finite reflection groups, and in other contexts. Various properties of the Dynkin diagram correspond to important features of the associated Lie algebra.

<span class="mw-page-title-main">Weyl group</span> Subgroup of a root systems isometry group

In mathematics, in particular the theory of Lie algebras, the Weyl group of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections through the hyperplanes orthogonal to the roots, and as such is a finite reflection group. In fact it turns out that most finite reflection groups are Weyl groups. Abstractly, Weyl groups are finite Coxeter groups, and are important examples of these.

In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; for example, the symmetry group of each regular polyhedron is a finite Coexter group. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups, and finite Coxeter groups were classified in 1935.

John Arthur Todd was an English mathematician who specialised in geometry.

<span class="mw-page-title-main">ADE classification</span>

In mathematics, the ADE classification is a situation where certain kinds of objects are in correspondence with simply laced Dynkin diagrams. The question of giving a common origin to these classifications, rather than a posteriori verification of a parallelism, was posed in. The complete list of simply laced Dynkin diagrams comprises

<span class="mw-page-title-main">Geometric group theory</span> Area in mathematics devoted to the study of finitely generated groups

Geometric group theory is an area in mathematics devoted to the study of finitely generated groups via exploring the connections between algebraic properties of such groups and topological and geometric properties of spaces on which these groups act.

<span class="mw-page-title-main">Point group</span> Group of geometric symmetries with at least one fixed point

In geometry, a point group is a mathematical group of symmetry operations (isometries in a Euclidean space) that have a fixed point in common. The coordinate origin of the Euclidean space is conventionally taken to be a fixed point, and every point group in dimension d is then a subgroup of the orthogonal group O(d). Point groups are used to describe the symmetries of geometric figures and physical objects such as molecules.

<span class="mw-page-title-main">Michael Artin</span> German American mathematician

Michael Artin is a German-American mathematician and a professor emeritus in the Massachusetts Institute of Technology Mathematics Department, known for his contributions to algebraic geometry.

In group theory and geometry, a reflection group is a discrete group which is generated by a set of reflections of a finite-dimensional Euclidean space. The symmetry group of a regular polytope or of a tiling of the Euclidean space by congruent copies of a regular polytope is necessarily a reflection group. Reflection groups also include Weyl groups and crystallographic Coxeter groups. While the orthogonal group is generated by reflections, it is a continuous group, not a discrete group, and is generally considered separately.

<span class="mw-page-title-main">Coxeter–Dynkin diagram</span> Pictorial representation of symmetry

In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors. It describes a kaleidoscopic construction: each graph "node" represents a mirror and the label attached to a branch encodes the dihedral angle order between two mirrors, that is, the amount by which the angle between the reflective planes can be multiplied to get 180 degrees. An unlabeled branch implicitly represents order-3, and each pair of nodes that is not connected by a branch at all represents a pair of mirrors at order-2.

<i>Regular Polytopes</i> (book) Geometry book

Regular Polytopes is a geometry book on regular polytopes written by Harold Scott MacDonald Coxeter. It was originally published by Methuen in 1947 and by Pitman Publishing in 1948, with a second edition published by Macmillan in 1963 and a third edition by Dover Publications in 1973. The Basic Library List Committee of the Mathematical Association of America has recommended that it be included in undergraduate mathematics libraries.

The history of group theory, a mathematical domain studying groups in their various forms, has evolved in various parallel threads. There are three historical roots of group theory: the theory of algebraic equations, number theory and geometry. Joseph Louis Lagrange, Niels Henrik Abel and Évariste Galois were early researchers in the field of group theory.

Alexandre V. Borovik is a Professor of Pure Mathematics at the University of Manchester, United Kingdom. He was born in Russia and graduated from Novosibirsk State University in 1978. His principal research lies in algebra, model theory, and combinatorics—topics on which he published several monographs and a number of papers. He also has an interest in mathematical practice: his book Mathematics under the Microscope: Notes on Cognitive Aspects of Mathematical Practice examines a mathematician's outlook on psychophysiological and cognitive issues in mathematics.

<span class="mw-page-title-main">Vera Serganova</span> American mathematician

Vera Vladimirovna Serganova is a professor of mathematics at the University of California, Berkeley who researches superalgebras and their representations.

<span class="mw-page-title-main">Kyoji Saito</span> Japanese mathematician

Kyōji Saitō is a Japanese mathematician, specializing in algebraic geometry and complex analytic geometry.

<i>A Guide to the Classification Theorem for Compact Surfaces</i> Textbook in topology

A Guide to the Classification Theorem for Compact Surfaces is a textbook in topology, on the classification of two-dimensional surfaces. It was written by Jean Gallier and Dianna Xu, and published in 2013 by Springer-Verlag as volume 9 of their Geometry and Computing series. The Basic Library List Committee of the Mathematical Association of America has recommended its inclusion in undergraduate mathematics libraries.

Geometric Constructions is a mathematics textbook on constructible numbers, and more generally on using abstract algebra to model the sets of points that can be created through certain types of geometric construction, and using Galois theory to prove limits on the constructions that can be performed. It was written by George E. Martin, and published by Springer-Verlag in 1998 as volume 81 of their Undergraduate Texts in Mathematics book series.

Introduction to Lattices and Order is a mathematical textbook on order theory by Brian A. Davey and Hilary Priestley. It was published by the Cambridge University Press in their Cambridge Mathematical Textbooks series in 1990, with a second edition in 2002. The second edition is significantly different in its topics and organization, and was revised to incorporate recent developments in the area, especially in its applications to computer science. The Basic Library List Committee of the Mathematical Association of America has suggested its inclusion in undergraduate mathematics libraries.

<i>The Geometry of the Octonions</i> Mathematics book

The Geometry of the Octonions is a mathematics book on the octonions, a system of numbers generalizing the complex numbers and quaternions, presenting its material at a level suitable for undergraduate mathematics students. It was written by Tevian Dray and Corinne Manogue, and published in 2015 by World Scientific. The Basic Library List Committee of the Mathematical Association of America has suggested its inclusion in undergraduate mathematics libraries.

References

  1. 1 2 3 4 5 6 Karaali, Gizem (May 2010), "Review of Mirrors and Reflections", MAA Reviews, Mathematical Association of America
  2. 1 2 3 4 5 6 Chlouveraki, Maria (2011), "Review of Mirrors and Reflections", MathSciNet , MR   2561378
  3. 1 2 3 4 5 6 Ellers, Erich W., "Review of Mirrors and Reflections", zbMATH , Zbl   1193.20001