Complex reflection group

Last updated

In mathematics, a complex reflection group is a finite group acting on a finite-dimensional complex vector space that is generated by complex reflections: non-trivial elements that fix a complex hyperplane pointwise.

Contents

Complex reflection groups arise in the study of the invariant theory of polynomial rings. In the mid-20th century, they were completely classified in work of Shephard and Todd. Special cases include the symmetric group of permutations, the dihedral groups, and more generally all finite real reflection groups (the Coxeter groups or Weyl groups, including the symmetry groups of regular polyhedra).

Definition

A (complex) reflection r (sometimes also called pseudo reflection or unitary reflection) of a finite-dimensional complex vector space V is an element of finite order that fixes a complex hyperplane pointwise, that is, the fixed-space has codimension 1.

A (finite) complex reflection group is a finite subgroup of that is generated by reflections.

Properties

Any real reflection group becomes a complex reflection group if we extend the scalars from R to C. In particular, all finite Coxeter groups or Weyl groups give examples of complex reflection groups.

A complex reflection group W is irreducible if the only W-invariant proper subspace of the corresponding vector space is the origin. In this case, the dimension of the vector space is called the rank of W.

The Coxeter number of an irreducible complex reflection group W of rank is defined as where denotes the set of reflections and denotes the set of reflecting hyperplanes. In the case of real reflection groups, this definition reduces to the usual definition of the Coxeter number for finite Coxeter systems.

Classification

Any complex reflection group is a product of irreducible complex reflection groups, acting on the sum of the corresponding vector spaces. [1] So it is sufficient to classify the irreducible complex reflection groups.

The irreducible complex reflection groups were classified by G. C.Shephard and J. A. Todd  ( 1954 ). They proved that every irreducible belonged to an infinite family G(m, p, n) depending on 3 positive integer parameters (with p dividing m) or was one of 34 exceptional cases, which they numbered from 4 to 37. [2] The group G(m, 1, n) is the generalized symmetric group; equivalently, it is the wreath product of the symmetric group Sym(n) by a cyclic group of order m. As a matrix group, its elements may be realized as monomial matrices whose nonzero elements are mth roots of unity.

The group G(m, p, n) is an index-p subgroup of G(m, 1, n). G(m, p, n) is of order mnn!/p. As matrices, it may be realized as the subset in which the product of the nonzero entries is an (m/p)th root of unity (rather than just an mth root). Algebraically, G(m, p, n) is a semidirect product of an abelian group of order mn/p by the symmetric group Sym(n); the elements of the abelian group are of the form (θa1, θa2, ..., θan), where θ is a primitive mth root of unity and Σai ≡ 0 mod p, and Sym(n) acts by permutations of the coordinates. [3]

The group G(m,p,n) acts irreducibly on Cn except in the cases m = 1, n > 1 (the symmetric group) and G(2, 2, 2) (the Klein four-group). In these cases, Cn splits as a sum of irreducible representations of dimensions 1 and n − 1.

Special cases of G(m, p, n)

Coxeter groups

When m = 2, the representation described in the previous section consists of matrices with real entries, and hence in these cases G(m,p,n) is a finite Coxeter group. In particular: [4]

  • G(1, 1, n) has type An1 = [3,3,...,3,3] = CDel node.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 3.pngCDel node.png; the symmetric group of order n!
  • G(2, 1, n) has type Bn = [3,3,...,3,4] = CDel node.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel 4.pngCDel node.png; the hyperoctahedral group of order 2nn!
  • G(2, 2, n) has type Dn = [3,3,...,31,1] = CDel node.pngCDel 3.pngCDel node.pngCDel 3.png...CDel 3.pngCDel node.pngCDel split1.pngCDel nodes.png, order 2nn!/2.

In addition, when m = p and n = 2, the group G(p, p, 2) is the dihedral group of order 2p; as a Coxeter group, type I2(p) = [p] = CDel branch.pngCDel labelp.png (and the Weyl group G2 when p = 6).

Other special cases and coincidences

The only cases when two groups G(m, p, n) are isomorphic as complex reflection groups[ clarification needed ] are that G(ma, pa, 1) is isomorphic to G(mb, pb, 1) for any positive integers a, b (and both are isomorphic to the cyclic group of order m/p). However, there are other cases when two such groups are isomorphic as abstract groups.

The groups G(3, 3, 2) and G(1, 1, 3) are isomorphic to the symmetric group Sym(3). The groups G(2, 2, 3) and G(1, 1, 4) are isomorphic to the symmetric group Sym(4). Both G(2, 1, 2) and G(4, 4, 2) are isomorphic to the dihedral group of order 8. And the groups G(2p, p, 1) are cyclic of order 2, as is G(1, 1, 2).

List of irreducible complex reflection groups

There are a few duplicates in the first 3 lines of this list; see the previous section for details.

STRankStructure and namesCoxeter namesOrderReflectionsDegreesCodegrees
1n1 Symmetric group G(1,1,n) = Sym(n)n!2n(n  1)/22, 3, ...,n0,1,...,n  2
2nG(m,p,n) m > 1, n > 1, p|m (G(2,2,2) is reducible)mnn!/p2mn(n1)/2,dnφ(d) (d|m/p, d > 1)m,2m,..,(n  1)m; mn/p0,m,..., (n  1)m if p < m; 0,m,...,(n  2)m, (n  1)m  n if p = m
22G(p,1,2) p > 1,p[4]2 or CDel pnode.pngCDel 4.pngCDel node.png2p22p,d2φ(d) (d|p, d > 1)p; 2p0,p
22 Dihedral group G(p,p,2) p > 2[p] or CDel node.pngCDel p.pngCDel node.png2p2p2,p0,p-2
31 Cyclic group G(p,1,1) = Zpp[] or CDel pnode.pngpdφ(d) (d|p, d > 1)p0
42W(L2), Z2.T3[3]3 or CDel 3node.pngCDel 3.pngCDel 3node.png, ⟨2,3,3⟩ 24384,60,2
52Z6.T3[4]3 or CDel 3node.pngCDel 4.pngCDel 3node.png723166,120,6
62Z4.T3[6]2 or CDel 3node.pngCDel 6.pngCDel node.png4826384,120,8
72Z12.T‹3,3,3›2 or ⟨2,3,3⟩61442631612,120,12
82Z4.O4[3]4 or CDel 4node.pngCDel 3.pngCDel 4node.png96264128,120,4
92Z8.O4[6]2 or CDel 4node.pngCDel 6.pngCDel node.png or ⟨2,3,4⟩41922184128,240,16
102Z12.O4[4]3 or CDel 4node.pngCDel 4.pngCDel 3node.png2882631641212,240,12
112Z24.O⟨2,3,4⟩1257621831641224,240,24
122Z2.O= GL2(F3) ⟨2,3,4⟩ 482126,80,10
132Z4.O⟨2,3,4⟩2962188,120,16
142Z6.O3[8]2 or CDel 3node.pngCDel 8.pngCDel node.png1442123166,240,18
152Z12.O⟨2,3,4⟩628821831612,240,24
162Z10.I, ⟨2,3,5⟩×Z55[3]5 or CDel 5node.pngCDel 3.pngCDel 5node.png60054820,300,10
172Z20.I5[6]2 or CDel 5node.pngCDel 6.pngCDel node.png120023054820,600,40
182Z30.I5[4]3 or CDel 5node.pngCDel 4.pngCDel 3node.png180034054830,600,30
192Z60.I⟨2,3,5⟩30360023034054860,600,60
202Z6.I3[5]3 or CDel 3node.pngCDel 5.pngCDel 3node.png36034012,300,18
212Z12.I3[10]2 or CDel 3node.pngCDel 10.pngCDel node.png72023034012,600,48
222Z4.I⟨2,3,5⟩224023012,200,28
233W(H3) = Z2 × PSL2(5)[5,3], CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png1202152,6,100,4,8
243W(J3(4)) = Z2 × PSL2(7), Klein [1 1 14]4, CDel node.pngCDel 4split1.pngCDel branch.pngCDel label4.png3362214,6,140,8,10
253W(L3) = W(P3) = 31+2.SL2(3) Hessian 3[3]3[3]3, CDel 3node.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.png6483246,9,120,3,6
263W(M3) =Z2 ×31+2.SL2(3) Hessian 2[4]3[3]3, CDel node.pngCDel 4.pngCDel 3node.pngCDel 3.pngCDel 3node.png129629 3246,12,180,6,12
273W(J3(5)) = Z2 ×(Z3.Alt(6)), Valentiner [1 1 15]4, CDel node.pngCDel 4split1.pngCDel branch.pngCDel label5.png
[1 1 14]5, CDel node.pngCDel 5split1.pngCDel branch.pngCDel label4.png
21602456,12,300,18,24
284W(F4) = (SL2(3)* SL2(3)).(Z2 × Z2)[3,4,3], CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.png1152212+122,6,8,120,4,6,10
294W(N4) = (Z4*21 + 4).Sym(5)[1 1 2]4, CDel node.pngCDel 4split1.pngCDel branch.pngCDel 3a.pngCDel nodea.png76802404,8,12,200,8,12,16
304W(H4) = (SL2(5)*SL2(5)).Z2[5,3,3], CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.png144002602,12,20,300,10,18,28
314W(EN4) = W(O4) = (Z4*21 + 4).Sp4(2)460802608,12,20,240,12,16,28
324W(L4) = Z3 × Sp4(3)3[3]3[3]3[3]3, CDel 3node.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.png15552038012,18,24,300,6,12,18
335W(K5) = Z2 ×Ω5(3) = Z2 × PSp4(3)= Z2 × PSU4(2)[1 2 2]3, CDel node.pngCDel 3split1.pngCDel branch.pngCDel 3ab.pngCDel nodes.png518402454,6,10,12,180,6,8,12,14
346W(K6)= Z3
6
(3).Z2, Mitchell's group
[1 2 3]3, CDel node.pngCDel 3split1.pngCDel branch.pngCDel 3ab.pngCDel nodes.pngCDel 3a.pngCDel nodea.png3919104021266,12,18,24,30,420,12,18,24,30,36
356W(E6) = SO5(3) = O
6
(2) = PSp4(3).Z2 = PSU4(2).Z2
[32,2,1], CDel node.pngCDel 3.pngCDel node.pngCDel split1.pngCDel nodes.pngCDel 3ab.pngCDel nodes.png518402362,5,6,8,9,120,3,4,6,7,10
367W(E7) = Z2 ×Sp6(2)[33,2,1], CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png29030402632,6,8,10,12,14,180,4,6,8,10,12,16
378W(E8)= Z2.O+
8
(2)
[34,2,1], CDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png69672960021202,8,12,14,18,20,24,300,6,10,12,16,18,22,28

For more information, including diagrams, presentations, and codegrees of complex reflection groups, see the tables in (MichelBroué,Gunter Malle&Raphaël Rouquier  1998 ).

Degrees

Shephard and Todd proved that a finite group acting on a complex vector space is a complex reflection group if and only if its ring of invariants is a polynomial ring (Chevalley–Shephard–Todd theorem). For being the rank of the reflection group, the degrees of the generators of the ring of invariants are called degrees of W and are listed in the column above headed "degrees". They also showed that many other invariants of the group are determined by the degrees as follows:

Codegrees

For being the rank of the reflection group, the codegrees of W can be defined by

Well-generated complex reflection groups

By definition, every complex reflection group is generated by its reflections. The set of reflections is not a minimal generating set, however, and every irreducible complex reflection groups of rank n has a minimal generating set consisting of either n or n + 1 reflections. In the former case, the group is said to be well-generated.

The property of being well-generated is equivalent to the condition for all . Thus, for example, one can read off from the classification that the group G(m, p, n) is well-generated if and only if p = 1 or m.

For irreducible well-generated complex reflection groups, the Coxeter number h defined above equals the largest degree, . A reducible complex reflection group is said to be well-generated if it is a product of irreducible well-generated complex reflection groups. Every finite real reflection group is well-generated.

Shephard groups

The well-generated complex reflection groups include a subset called the Shephard groups. These groups are the symmetry groups of regular complex polytopes. In particular, they include the symmetry groups of regular real polyhedra. The Shephard groups may be characterized as the complex reflection groups that admit a "Coxeter-like" presentation with a linear diagram. That is, a Shephard group has associated positive integers p1, ..., pn and q1, ..., qn − 1 such that there is a generating set s1, ..., sn satisfying the relations

for i = 1, ..., n,
if ,

and

where the products on both sides have qi terms, for i = 1, ..., n − 1.

This information is sometimes collected in the Coxeter-type symbol p1[q1]p2[q2] ... [qn − 1]pn, as seen in the table above.

Among groups in the infinite family G(m, p, n), the Shephard groups are those in which p = 1. There are also 18 exceptional Shephard groups, of which three are real. [5] [6]

Cartan matrices

An extended Cartan matrix defines the unitary group. Shephard groups of rank n group have n generators. Ordinary Cartan matrices have diagonal elements 2, while unitary reflections do not have this restriction. [7] For example, the rank 1 group of order p (with symbols p[], CDel pnode.png) is defined by the 1 × 1 matrix .

Given: .

Rank 1
GroupCartanGroupCartan
2[]CDel node.png3[]CDel 3node.png
4[]CDel 4node.png5[]CDel 5node.png
Rank 2
GroupCartanGroupCartan
G43[3]3CDel 3node.pngCDel 3.pngCDel 3node.pngG53[4]3CDel 3node.pngCDel 4.pngCDel 3node.png
G62[6]3CDel node.pngCDel 6.pngCDel 3node.pngG84[3]4CDel 4node.pngCDel 3.pngCDel 4node.png
G92[6]4CDel node.pngCDel 6.pngCDel 4node.pngG103[4]4CDel 3node.pngCDel 4.pngCDel 4node.png
G143[8]2CDel 3node.pngCDel 8.pngCDel node.pngG165[3]5CDel 5node.pngCDel 3.pngCDel 5node.png
G172[6]5CDel node.pngCDel 6.pngCDel 5node.pngG183[4]5CDel 3node.pngCDel 4.pngCDel 5node.png
G203[5]3CDel 3node.pngCDel 5.pngCDel 3node.pngG212[10]3CDel node.pngCDel 10.pngCDel 3node.png
Rank 3
GroupCartanGroupCartan
G22<5,3,2>2G23[5,3]CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.png
G24[1 1 14]4CDel node.pngCDel 4split1.pngCDel branch.pngCDel label4.pngG253[3]3[3]3CDel 3node.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.png
G263[3]3[4]2CDel 3node.pngCDel 3.pngCDel 3node.pngCDel 4.pngCDel node.pngG27[1 1 15]4CDel node.pngCDel 4split1.pngCDel branch.pngCDel label5.png
Rank 4
GroupCartanGroupCartan
G28[3,4,3]CDel node.pngCDel 3.pngCDel node.pngCDel 4.pngCDel node.pngCDel 3.pngCDel node.pngG29[1 1 2]4CDel node.pngCDel 4split1.pngCDel branch.pngCDel 3a.pngCDel nodea.png
G30[5,3,3]CDel node.pngCDel 5.pngCDel node.pngCDel 3.pngCDel node.pngCDel 3.pngCDel node.pngG323[3]3[3]3CDel 3node.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.pngCDel 3.pngCDel 3node.png
Rank 5
GroupCartanGroupCartan
G31O4G33[1 2 2]3CDel node.pngCDel 3split1.pngCDel branch.pngCDel 3ab.pngCDel nodes.png

See also

Related Research Articles

<span class="mw-page-title-main">Symmetric group</span> Type of group in abstract algebra

In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group defined over a finite set of symbols consists of the permutations that can be performed on the symbols. Since there are such permutation operations, the order of the symmetric group is .

In mathematics, the Peter–Weyl theorem is a basic result in the theory of harmonic analysis, applying to topological groups that are compact, but are not necessarily abelian. It was initially proved by Hermann Weyl, with his student Fritz Peter, in the setting of a compact topological group G. The theorem is a collection of results generalizing the significant facts about the decomposition of the regular representation of any finite group, as discovered by Ferdinand Georg Frobenius and Issai Schur.

<span class="mw-page-title-main">Weyl group</span> Subgroup of a root systems isometry group

In mathematics, in particular the theory of Lie algebras, the Weyl group of a root system Φ is a subgroup of the isometry group of that root system. Specifically, it is the subgroup which is generated by reflections through the hyperplanes orthogonal to the roots, and as such is a finite reflection group. In fact it turns out that most finite reflection groups are Weyl groups. Abstractly, Weyl groups are finite Coxeter groups, and are important examples of these.

In mathematics, a Coxeter group, named after H. S. M. Coxeter, is an abstract group that admits a formal description in terms of reflections. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; for example, the symmetry group of each regular polyhedron is a finite Coexter group. However, not all Coxeter groups are finite, and not all can be described in terms of symmetries and Euclidean reflections. Coxeter groups were introduced in 1934 as abstractions of reflection groups, and finite Coxeter groups were classified in 1935.

The representation theory of groups is a part of mathematics which examines how groups act on given structures.

In mathematics, and especially the discipline of representation theory, the Schur indicator, named after Issai Schur, or Frobenius–Schur indicator describes what invariant bilinear forms a given irreducible representation of a compact group on a complex vector space has. It can be used to classify the irreducible representations of compact groups on real vector spaces.

In mathematics, a Coxeter element is an element of an irreducible Coxeter group which is a product of all simple reflections. The product depends on the order in which they are taken, but different orderings produce conjugate elements, which have the same order. This order is known as the Coxeter number. They are named after British-Canadian geometer H.S.M. Coxeter, who introduced the groups in 1934 as abstractions of reflection groups.

In mathematics, the Harish-Chandra isomorphism, introduced by Harish-Chandra (1951), is an isomorphism of commutative rings constructed in the theory of Lie algebras. The isomorphism maps the center of the universal enveloping algebra of a reductive Lie algebra to the elements of the symmetric algebra of a Cartan subalgebra that are invariant under the Weyl group .

<span class="mw-page-title-main">Coxeter–Dynkin diagram</span> Pictorial representation of symmetry

In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors. It describes a kaleidoscopic construction: each graph "node" represents a mirror and the label attached to a branch encodes the dihedral angle order between two mirrors, that is, the amount by which the angle between the reflective planes can be multiplied to get 180 degrees. An unlabeled branch implicitly represents order-3, and each pair of nodes that is not connected by a branch at all represents a pair of mirrors at order-2.

In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).

In geometry, a complex polytope is a generalization of a polytope in real space to an analogous structure in a complex Hilbert space, where each real dimension is accompanied by an imaginary one.

In mathematics, the main results concerning irreducible unitary representations of the Lie group SL(2, R) are due to Gelfand and Naimark (1946), V. Bargmann (1947), and Harish-Chandra (1952).

Schur–Weyl duality is a mathematical theorem in representation theory that relates irreducible finite-dimensional representations of the general linear and symmetric groups. It is named after two pioneers of representation theory of Lie groups, Issai Schur, who discovered the phenomenon, and Hermann Weyl, who popularized it in his books on quantum mechanics and classical groups as a way of classifying representations of unitary and general linear groups.

In mathematics, a zonal spherical function or often just spherical function is a function on a locally compact group G with compact subgroup K (often a maximal compact subgroup) that arises as the matrix coefficient of a K-invariant vector in an irreducible representation of G. The key examples are the matrix coefficients of the spherical principal series, the irreducible representations appearing in the decomposition of the unitary representation of G on L2(G/K). In this case the commutant of G is generated by the algebra of biinvariant functions on G with respect to K acting by right convolution. It is commutative if in addition G/K is a symmetric space, for example when G is a connected semisimple Lie group with finite centre and K is a maximal compact subgroup. The matrix coefficients of the spherical principal series describe precisely the spectrum of the corresponding C* algebra generated by the biinvariant functions of compact support, often called a Hecke algebra. The spectrum of the commutative Banach *-algebra of biinvariant L1 functions is larger; when G is a semisimple Lie group with maximal compact subgroup K, additional characters come from matrix coefficients of the complementary series, obtained by analytic continuation of the spherical principal series.

<span class="mw-page-title-main">Coxeter notation</span> Classification system for symmetry groups in geometry

In geometry, Coxeter notation is a system of classifying symmetry groups, describing the angles between fundamental reflections of a Coxeter group in a bracketed notation expressing the structure of a Coxeter-Dynkin diagram, with modifiers to indicate certain subgroups. The notation is named after H. S. M. Coxeter, and has been more comprehensively defined by Norman Johnson.

In mathematics, the tensor product of representations is a tensor product of vector spaces underlying representations together with the factor-wise group action on the product. This construction, together with the Clebsch–Gordan procedure, can be used to generate additional irreducible representations if one already knows a few.

This is a glossary of representation theory in mathematics.

In mathematics, specifically in representation theory, a semisimple representation is a linear representation of a group or an algebra that is a direct sum of simple representations. It is an example of the general mathematical notion of semisimplicity.

<span class="mw-page-title-main">Affine symmetric group</span> Mathematical structure

The affine symmetric groups are a family of mathematical structures that describe the symmetries of the number line and the regular triangular tiling of the plane, as well as related higher-dimensional objects. In addition to this geometric description, the affine symmetric groups may be defined in other ways: as collections of permutations (rearrangements) of the integers that are periodic in a certain sense, or in purely algebraic terms as a group with certain generators and relations. They are studied in combinatorics and representation theory.

In the mathematical theory of reflection groups, a parabolic subgroup is a special kind of subgroup. The precise definition of which subgroups are parabolic depends on context—for example, whether one is discussing general Coxeter groups or complex reflection groups—but in all cases the collection of parabolic subgroups exhibits important good behaviors, and the different definitions essentially coincide in the case of finite real reflection groups. For example, the parabolic subgroups of a reflection group have a natural indexing set and form a lattice when ordered by inclusion. Parabolic subgroups arise in the theory of algebraic groups, through their connection with Weyl groups.

References

  1. Lehrer and Taylor, Theorem 1.27.
  2. Lehrer and Taylor, p. 271.
  3. Lehrer and Taylor, Section 2.2.
  4. Lehrer and Taylor, Example 2.11.
  5. Peter Orlik, Victor Reiner, Anne V. Shepler. The sign representation for Shephard groups. Mathematische Annalen. March 2002, Volume 322, Issue 3, pp 477–492. DOI:10.1007/s002080200001
  6. Coxeter, H. S. M.; Regular Complex Polytopes, Cambridge University Press, 1974.
  7. Unitary Reflection Groups, pp.91-93