Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not change, or are invariant, under the transformations from a given linear group. For example, if we consider the action of the special linear group SLn on the space of n by n matrices by left multiplication, then the determinant is an invariant of this action because the determinant of A X equals the determinant of X, when A is in SLn.
Let be a group, and a finite-dimensional vector space over a field (which in classical invariant theory was usually assumed to be the complex numbers). A representation of in is a group homomorphism , which induces a group action of on . If is the space of polynomial functions on , then the group action of on produces an action on by the following formula:
With this action it is natural to consider the subspace of all polynomial functions which are invariant under this group action, in other words the set of polynomials such that for all . This space of invariant polynomials is denoted .
First problem of invariant theory: [1] Is a finitely generated algebra over ?
For example, if and the space of square matrices, and the action of on is given by left multiplication, then is isomorphic to a polynomial algebra in one variable, generated by the determinant. In other words, in this case, every invariant polynomial is a linear combination of powers of the determinant polynomial. So in this case, is finitely generated over .
If the answer is yes, then the next question is to find a minimal basis, and ask whether the module of polynomial relations between the basis elements (known as the syzygies) is finitely generated over .
Invariant theory of finite groups has intimate connections with Galois theory. One of the first major results was the main theorem on the symmetric functions that described the invariants of the symmetric group acting on the polynomial ring ] by permutations of the variables. More generally, the Chevalley–Shephard–Todd theorem characterizes finite groups whose algebra of invariants is a polynomial ring. Modern research in invariant theory of finite groups emphasizes "effective" results, such as explicit bounds on the degrees of the generators. The case of positive characteristic, ideologically close to modular representation theory, is an area of active study, with links to algebraic topology.
Invariant theory of infinite groups is inextricably linked with the development of linear algebra, especially, the theories of quadratic forms and determinants. Another subject with strong mutual influence was projective geometry, where invariant theory was expected to play a major role in organizing the material. One of the highlights of this relationship is the symbolic method. Representation theory of semisimple Lie groups has its roots in invariant theory.
David Hilbert's work on the question of the finite generation of the algebra of invariants (1890) resulted in the creation of a new mathematical discipline, abstract algebra. A later paper of Hilbert (1893) dealt with the same questions in more constructive and geometric ways, but remained virtually unknown until David Mumford brought these ideas back to life in the 1960s, in a considerably more general and modern form, in his geometric invariant theory. In large measure due to the influence of Mumford, the subject of invariant theory is seen to encompass the theory of actions of linear algebraic groups on affine and projective varieties. A distinct strand of invariant theory, going back to the classical constructive and combinatorial methods of the nineteenth century, has been developed by Gian-Carlo Rota and his school. A prominent example of this circle of ideas is given by the theory of standard monomials.
Simple examples of invariant theory come from computing the invariant monomials from a group action. For example, consider the -action on sending
Then, since are the lowest degree monomials which are invariant, we have that
This example forms the basis for doing many computations.
The theory of invariants came into existence about the middle of the nineteenth century somewhat like Minerva: a grown-up virgin, mailed in the shining armor of algebra, she sprang forth from Cayley's Jovian head.
Cayley first established invariant theory in his "On the Theory of Linear Transformations (1845)." In the opening of his paper, Cayley credits an 1841 paper of George Boole, "investigations were suggested to me by a very elegant paper on the same subject... by Mr Boole." (Boole's paper was Exposition of a General Theory of Linear Transformations, Cambridge Mathematical Journal.) [2]
Classically, the term "invariant theory" refers to the study of invariant algebraic forms (equivalently, symmetric tensors) for the action of linear transformations. This was a major field of study in the latter part of the nineteenth century. Current theories relating to the symmetric group and symmetric functions, commutative algebra, moduli spaces and the representations of Lie groups are rooted in this area.
In greater detail, given a finite-dimensional vector space V of dimension n we can consider the symmetric algebra S(Sr(V)) of the polynomials of degree r over V, and the action on it of GL(V). It is actually more accurate to consider the relative invariants of GL(V), or representations of SL(V), if we are going to speak of invariants: that is because a scalar multiple of the identity will act on a tensor of rank r in S(V) through the r-th power 'weight' of the scalar. The point is then to define the subalgebra of invariants I(Sr(V)) for the action. We are, in classical language, looking at invariants of n-ary r-ics, where n is the dimension of V. (This is not the same as finding invariants of GL(V) on S(V); this is an uninteresting problem as the only such invariants are constants.) The case that was most studied was invariants of binary forms where n = 2.
Other work included that of Felix Klein in computing the invariant rings of finite group actions on (the binary polyhedral groups, classified by the ADE classification); these are the coordinate rings of du Val singularities.
Like the Arabian phoenix rising out of its ashes, the theory of invariants, pronounced dead at the turn of the century, is once again at the forefront of mathematics.
The work of David Hilbert, proving that I(V) was finitely presented in many cases, almost put an end to classical invariant theory for several decades, though the classical epoch in the subject continued to the final publications of Alfred Young, more than 50 years later. Explicit calculations for particular purposes have been known in modern times (for example Shioda, with the binary octavics).
Hilbert (1890) proved that if V is a finite-dimensional representation of the complex algebraic group G = SLn(C) then the ring of invariants of G acting on the ring of polynomials R = S(V) is finitely generated. His proof used the Reynolds operator ρ from R to RG with the properties
Hilbert constructed the Reynolds operator explicitly using Cayley's omega process Ω, though now it is more common to construct ρ indirectly as follows: for compact groups G, the Reynolds operator is given by taking the average over G, and non-compact reductive groups can be reduced to the case of compact groups using Weyl's unitarian trick.
Given the Reynolds operator, Hilbert's theorem is proved as follows. The ring R is a polynomial ring so is graded by degrees, and the ideal I is defined to be the ideal generated by the homogeneous invariants of positive degrees. By Hilbert's basis theorem the ideal I is finitely generated (as an ideal). Hence, I is finitely generated by finitely many invariants of G (because if we are given any – possibly infinite – subset S that generates a finitely generated ideal I, then I is already generated by some finite subset of S). Let i1,...,in be a finite set of invariants of G generating I (as an ideal). The key idea is to show that these generate the ring RG of invariants. Suppose that x is some homogeneous invariant of degree d > 0. Then
for some aj in the ring R because x is in the ideal I. We can assume that aj is homogeneous of degree d− deg ij for every j (otherwise, we replace aj by its homogeneous component of degree d− deg ij; if we do this for every j, the equation x = a1i1 + ... + anin will remain valid). Now, applying the Reynolds operator to x = a1i1 + ... + anin gives
We are now going to show that x lies in the R-algebra generated by i1,...,in.
First, let us do this in the case when the elements ρ(ak) all have degree less than d. In this case, they are all in the R-algebra generated by i1,...,in (by our induction assumption). Therefore, x is also in this R-algebra (since x = ρ(a1)i1 + ... + ρ(an)in).
In the general case, we cannot be sure that the elements ρ(ak) all have degree less than d. But we can replace each ρ(ak) by its homogeneous component of degree d− deg ij. As a result, these modified ρ(ak) are still G-invariants (because every homogeneous component of a G-invariant is a G-invariant) and have degree less than d (since deg ik> 0). The equation x = ρ(a1)i1 + ... + ρ(an)in still holds for our modified ρ(ak), so we can again conclude that x lies in the R-algebra generated by i1,...,in.
Hence, by induction on the degree, all elements of RG are in the R-algebra generated by i1,...,in.
The modern formulation of geometric invariant theory is due to David Mumford, and emphasizes the construction of a quotient by the group action that should capture invariant information through its coordinate ring. It is a subtle theory, in that success is obtained by excluding some 'bad' orbits and identifying others with 'good' orbits. In a separate development the symbolic method of invariant theory, an apparently heuristic combinatorial notation, has been rehabilitated.
One motivation was to construct moduli spaces in algebraic geometry as quotients of schemes parametrizing marked objects. In the 1970s and 1980s the theory developed interactions with symplectic geometry and equivariant topology, and was used to construct moduli spaces of objects in differential geometry, such as instantons and monopoles.
In mathematics Hilbert's basis theorem asserts that every ideal of a polynomial ring over a field has a finite generating set.
In mathematics, rings are algebraic structures that generalize fields: multiplication need not be commutative and multiplicative inverses need not exist. Informally, a ring is a set equipped with two binary operations satisfying properties analogous to those of addition and multiplication of integers. Ring elements may be numbers such as integers or complex numbers, but they may also be non-numerical objects such as polynomials, square matrices, functions, and power series.
In mathematics, in particular abstract algebra, a graded ring is a ring such that the underlying additive group is a direct sum of abelian groups such that . The index set is usually the set of nonnegative integers or the set of integers, but can be any monoid. The direct sum decomposition is usually referred to as gradation or grading.
In mathematics, Hilbert's Nullstellensatz is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893.
In algebraic geometry and commutative algebra, the Zariski topology is a topology defined on geometric objects called varieties. It is very different from topologies that are commonly used in real or complex analysis; in particular, it is not Hausdorff. This topology was introduced primarily by Oscar Zariski and later generalized for making the set of prime ideals of a commutative ring a topological space.
Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.
In algebra, ring theory is the study of rings, algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings; their representations, or, in different language, modules; special classes of rings ; related structures like rngs; as well as an array of properties that prove to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane curve can be completed in a projective algebraic plane curve by homogenizing its defining polynomial. Conversely, a projective algebraic plane curve of homogeneous equation h(x, y, t) = 0 can be restricted to the affine algebraic plane curve of equation h(x, y, 1) = 0. These two operations are each inverse to the other; therefore, the phrase algebraic plane curve is often used without specifying explicitly whether it is the affine or the projective case that is considered.
In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.
In algebraic geometry, a projective variety is an algebraic variety that is a closed subvariety of a projective space. That is, it is the zero-locus in of some finite family of homogeneous polynomials that generate a prime ideal, the defining ideal of the variety.
In mathematics, a Cohen–Macaulay ring is a commutative ring with some of the algebro-geometric properties of a smooth variety, such as local equidimensionality. Under mild assumptions, a local ring is Cohen–Macaulay exactly when it is a finitely generated free module over a regular local subring. Cohen–Macaulay rings play a central role in commutative algebra: they form a very broad class, and yet they are well understood in many ways.
In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice.
In mathematics Haboush's theorem, often still referred to as the Mumford conjecture, states that for any semisimple algebraic group G over a field K, and for any linear representation ρ of G on a K-vector space V, given v ≠ 0 in V that is fixed by the action of G, there is a G-invariant polynomial F on V, without constant term, such that
In mathematics, the Killing form, named after Wilhelm Killing, is a symmetric bilinear form that plays a basic role in the theories of Lie groups and Lie algebras. Cartan's criteria show that Killing form has a close relationship to the semisimplicity of the Lie algebras.
In mathematics, geometric invariant theory is a method for constructing quotients by group actions in algebraic geometry, used to construct moduli spaces. It was developed by David Mumford in 1965, using ideas from the paper in classical invariant theory.
In mathematics, Hilbert's fourteenth problem, that is, number 14 of Hilbert's problems proposed in 1900, asks whether certain algebras are finitely generated.
In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homogeneous components of the algebra.
In mathematical invariant theory, an invariant of a binary form is a polynomial in the coefficients of a binary form in two variables x and y that remains invariant under the special linear group acting on the variables x and y.
In algebra, the fixed-point subring of an automorphism f of a ring R is the subring of the fixed points of f, that is,
In mathematics, a derivation of a commutative ring is called a locally nilpotent derivation (LND) if every element of is annihilated by some power of .