Reynolds operator

Last updated

In fluid dynamics and invariant theory, a Reynolds operator is a mathematical operator given by averaging something over a group action, satisfying a set of properties called Reynolds rules. In fluid dynamics Reynolds operators are often encountered in models of turbulent flows, particularly the Reynolds-averaged Navier–Stokes equations, where the average is typically taken over the fluid flow under the group of time translations. In invariant theory the average is often taken over a compact group or reductive algebraic group acting on a commutative algebra, such as a ring of polynomials. Reynolds operators were introduced into fluid dynamics by OsbourneReynolds  ( 1895 ) and named by J.Kampé de Fériet  ( 1934 , 1935 , 1949 ).

Contents

Definition

Reynolds operators are used in fluid dynamics, functional analysis, and invariant theory, and the notation and definitions in these areas differ slightly. A Reynolds operator acting on φ is sometimes denoted by or . Reynolds operators are usually linear operators acting on some algebra of functions, satisfying the identity

and sometimes some other conditions, such as commuting with various group actions.

Invariant theory

In invariant theory a Reynolds operator R is usually a linear operator satisfying

and

Together these conditions imply that R is idempotent: R2 = R. The Reynolds operator will also usually commute with some group action, and project onto the invariant elements of this group action.

Functional analysis

In functional analysis a Reynolds operator is a linear operator R acting on some algebra of functions φ, satisfying the Reynolds identity

The operator R is called an averaging operator if it is linear and satisfies

If R(R(φ)) = R(φ) for all φ then R is an averaging operator if and only if it is a Reynolds operator. Sometimes the R(R(φ)) = R(φ) condition is added to the definition of Reynolds operators.

Fluid dynamics

Let and be two random variables, and be an arbitrary constant. Then the properties satisfied by Reynolds operators, for an operator include linearity and the averaging property:

which implies

In addition the Reynolds operator is often assumed to commute with space and time translations:

Any operator satisfying these properties is a Reynolds operator. [1]

Examples

Reynolds operators are often given by projecting onto an invariant subspace of a group action.

Related Research Articles


In modern context Bra and Ket notation can be compared to modern row and column vectors with complex components. Matrix multiplication rules apply with a result usually of more than one row and column. Vector inside and outside products are also following modern rules. Paul Dirac invented the notation Bra and Ket before the present notation of row and column vectors was developed. The complex components are useful in deriving wave functions such as solutions to the Schrödinger equation and in making probability calculations for particle location or momentum in quantum mechanics. Bra and Ket notation is still used in describing quantum mechanics.

The Riesz representation theorem, sometimes called the Riesz–Fréchet representation theorem after Frigyes Riesz and Maurice René Fréchet, establishes an important connection between a Hilbert space and its continuous dual space. If the underlying field is the real numbers, the two are isometrically isomorphic; if the underlying field is the complex numbers, the two are isometrically anti-isomorphic. The (anti-) isomorphism is a particular natural isomorphism.

In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis.

Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

<span class="mw-page-title-main">Wave function</span> Mathematical description of the quantum state of a system

In quantum physics, a wave function is a mathematical description of the quantum state of an isolated quantum system. The wave function is a complex-valued probability amplitude, and the probabilities for the possible results of measurements made on the system can be derived from it. The most common symbols for a wave function are the Greek letters ψ and Ψ.

The Fock space is an algebraic construction used in quantum mechanics to construct the quantum states space of a variable or unknown number of identical particles from a single particle Hilbert space H. It is named after V. A. Fock who first introduced it in his 1932 paper "Konfigurationsraum und zweite Quantelung".

In physics, an operator is a function over a space of physical states onto another space of physical states. The simplest example of the utility of operators is the study of symmetry. Because of this, they are very useful tools in classical mechanics. Operators are even more important in quantum mechanics, where they form an intrinsic part of the formulation of the theory.

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

In quantum mechanics, the canonical commutation relation is the fundamental relation between canonical conjugate quantities. For example,

<span class="mw-page-title-main">Canonical quantization</span> Process of converting a classical physical theory into one compatible with quantum mechanics

In physics, canonical quantization is a procedure for quantizing a classical theory, while attempting to preserve the formal structure, such as symmetries, of the classical theory, to the greatest extent possible.

The Ehrenfest theorem, named after Paul Ehrenfest, an Austrian theoretical physicist at Leiden University, relates the time derivative of the expectation values of the position and momentum operators x and p to the expectation value of the force on a massive particle moving in a scalar potential ,

<span class="mw-page-title-main">Wigner's theorem</span> Theorem in the mathematical formulation of quantum mechanics

Wigner's theorem, proved by Eugene Wigner in 1931, is a cornerstone of the mathematical formulation of quantum mechanics. The theorem specifies how physical symmetries such as rotations, translations, and CPT are represented on the Hilbert space of states.

In quantum mechanics, the angular momentum operator is one of several related operators analogous to classical angular momentum. The angular momentum operator plays a central role in the theory of atomic and molecular physics and other quantum problems involving rotational symmetry. Such an operator is applied to a mathematical representation of the physical state of a system and yields an angular momentum value if the state has a definite value for it. In both classical and quantum mechanical systems, angular momentum is one of the three fundamental properties of motion.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

A decoherence-free subspace (DFS) is a subspace of a quantum system's Hilbert space that is invariant to non-unitary dynamics. Alternatively stated, they are a small section of the system Hilbert space where the system is decoupled from the environment and thus its evolution is completely unitary. DFSs can also be characterized as a special class of quantum error correcting codes. In this representation they are passive error-preventing codes since these subspaces are encoded with information that (possibly) won't require any active stabilization methods. These subspaces prevent destructive environmental interactions by isolating quantum information. As such, they are an important subject in quantum computing, where (coherent) control of quantum systems is the desired goal. Decoherence creates problems in this regard by causing loss of coherence between the quantum states of a system and therefore the decay of their interference terms, thus leading to loss of information from the (open) quantum system to the surrounding environment. Since quantum computers cannot be isolated from their environment and information can be lost, the study of DFSs is important for the implementation of quantum computers into the real world.

A quantum t-design is a probability distribution over either pure quantum states or unitary operators which can duplicate properties of the probability distribution over the Haar measure for polynomials of degree t or less. Specifically, the average of any polynomial function of degree t over the design is exactly the same as the average over Haar measure. Here the Haar measure is a uniform probability distribution over all quantum states or over all unitary operators. Quantum t-designs are so called because they are analogous to t-designs in classical statistics, which arose historically in connection with the problem of design of experiments. Two particularly important types of t-designs in quantum mechanics are projective and unitary t-designs.

In quantum physics, a quantum state is a mathematical entity that provides a probability distribution for the outcomes of each possible measurement on a system. Knowledge of the quantum state together with the rules for the system's evolution in time exhausts all that can be predicted about the system's behavior. A mixture of quantum states is again a quantum state. Quantum states that cannot be written as a mixture of other states are called pure quantum states, while all other states are called mixed quantum states. A pure quantum state can be represented by a ray in a Hilbert space over the complex numbers, while mixed states are represented by density matrices, which are positive semidefinite operators that act on Hilbert spaces.

Coherent states have been introduced in a physical context, first as quasi-classical states in quantum mechanics, then as the backbone of quantum optics and they are described in that spirit in the article Coherent states. However, they have generated a huge variety of generalizations, which have led to a tremendous amount of literature in mathematical physics. In this article, we sketch the main directions of research on this line. For further details, we refer to several existing surveys.

The projector augmented wave method (PAW) is a technique used in ab initio electronic structure calculations. It is a generalization of the pseudopotential and linear augmented-plane-wave methods, and allows for density functional theory calculations to be performed with greater computational efficiency.

In mathematics, the Weil–Brezin map, named after André Weil and Jonathan Brezin, is a unitary transformation that maps a Schwartz function on the real line to a smooth function on the Heisenberg manifold. The Weil–Brezin map gives a geometric interpretation of the Fourier transform, the Plancherel theorem and the Poisson summation formula. The image of Gaussian functions under the Weil–Brezin map are nil-theta functions, which are related to theta functions. The Weil–Brezin map is sometimes referred to as the Zak transform, which is widely applied in the field of physics and signal processing; however, the Weil–Brezin Map is defined via Heisenberg group geometrically, whereas there is no direct geometric or group theoretic interpretation from the Zak transform.

References

  1. Sagaut, Pierre (2006). Large Eddy Simulation for Incompressible Flows (Third ed.). Springer. ISBN   3-540-26344-6.