First and second fundamental theorems of invariant theory

Last updated

In algebra, the first and second fundamental theorems of invariant theory concern the generators and the relations of the ring of invariants in the ring of polynomial functions for classical groups (roughly the first concerns the generators and the second the relations). [1] The theorems are among the most important results of invariant theory.

Contents

Classically the theorems are proved over the complex numbers. But characteristic-free invariant theory extends the theorems to a field of arbitrary characteristic. [2]

First fundamental theorem for

The theorem states that the ring of -invariant polynomial functions on is generated by the functions , where are in and . [3]

Second fundamental theorem for general linear group

Let V, W be finite dimensional vector spaces over the complex numbers. Then the only -invariant prime ideals in are the determinant ideal generated by the determinants of all the -minors. [4]

Notes

  1. Procesi 2007 , Ch. 9, § 1.4.
  2. Procesi 2007 , Ch. 13 develops this theory.
  3. Procesi 2007 , Ch. 9, § 1.4.
  4. Procesi 2007 , Ch. 11, § 5.1.

Related Research Articles

In commutative algebra, the prime spectrum of a commutative ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

<span class="mw-page-title-main">Algebraic variety</span> Mathematical object studied in the field of algebraic geometry

Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. Modern definitions generalize this concept in several different ways, while attempting to preserve the geometric intuition behind the original definition.

In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.

<span class="mw-page-title-main">Representation of a Lie group</span> Group representation

In mathematics and theoretical physics, a representation of a Lie group is a linear action of a Lie group on a vector space. Equivalently, a representation is a smooth homomorphism of the group into the group of invertible operators on the vector space. Representations play an important role in the study of continuous symmetry. A great deal is known about such representations, a basic tool in their study being the use of the corresponding 'infinitesimal' representations of Lie algebras.

In mathematics, in particular in algebraic topology, differential geometry and algebraic geometry, the Chern classes are characteristic classes associated with complex vector bundles. They have since become fundamental concepts in many branches of mathematics and physics, such as string theory, Chern–Simons theory, knot theory, Gromov–Witten invariants. Chern classes were introduced by Shiing-Shen Chern.

<span class="mw-page-title-main">Lie algebra representation</span>

In the mathematical field of representation theory, a Lie algebra representation or representation of a Lie algebra is a way of writing a Lie algebra as a set of matrices in such a way that the Lie bracket is given by the commutator. In the language of physics, one looks for a vector space together with a collection of operators on satisfying some fixed set of commutation relations, such as the relations satisfied by the angular momentum operators.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not change, or are invariant, under the transformations from a given linear group. For example, if we consider the action of the special linear group SLn on the space of n by n matrices by left multiplication, then the determinant is an invariant of this action because the determinant of A X equals the determinant of X, when A is in SLn.

In mathematics, the Chern–Weil homomorphism is a basic construction in Chern–Weil theory that computes topological invariants of vector bundles and principal bundles on a smooth manifold M in terms of connections and curvature representing classes in the de Rham cohomology rings of M. That is, the theory forms a bridge between the areas of algebraic topology and differential geometry. It was developed in the late 1940s by Shiing-Shen Chern and André Weil, in the wake of proofs of the generalized Gauss–Bonnet theorem. This theory was an important step in the theory of characteristic classes.

In the mathematics of moduli theory, given an algebraic, reductive, Lie group and a finitely generated group , the -character variety of is a space of equivalence classes of group homomorphisms from to :

Schur–Weyl duality is a mathematical theorem in representation theory that relates irreducible finite-dimensional representations of the general linear and symmetric groups. It is named after two pioneers of representation theory of Lie groups, Issai Schur, who discovered the phenomenon, and Hermann Weyl, who popularized it in his books on quantum mechanics and classical groups as a way of classifying representations of unitary and general linear groups.

In mathematics, a regular element of a Lie algebra or Lie group is an element whose centralizer has dimension as small as possible. For example, in a complex semisimple Lie algebra, an element is regular if its centralizer in has dimension equal to the rank of , which in turn equals the dimension of some Cartan subalgebra . An element a Lie group is regular if its centralizer has dimension equal to the rank of .

Claudio Procesi is an Italian mathematician, known for works in algebra and representation theory.

In algebraic geometry, a torus action on an algebraic variety is a group action of an algebraic torus on the variety. A variety equipped with an action of a torus T is called a T-variety. In differential geometry, one considers an action of a real or complex torus on a manifold.

In mathematics, given a quiver Q with set of vertices Q0 and set of arrows Q1, a representation of Q assigns a vector space Vi to each vertex and a linear map V(α): V(s(α)) → V(t(α)) to each arrow α, where s(α), t(α) are, respectively, the starting and the ending vertices of α. Given an element dQ0, the set of representations of Q with dim Vi = d(i) for each i has a vector space structure.

In mathematics, the tensor product of representations is a tensor product of vector spaces underlying representations together with the factor-wise group action on the product. This construction, together with the Clebsch–Gordan procedure, can be used to generate additional irreducible representations if one already knows a few.

In algebra, the fixed-point subring of an automorphism f of a ring R is the subring of the fixed points of f, that is,

This is a glossary of representation theory in mathematics.

In mathematics, specifically in representation theory, a semisimple representation is a linear representation of a group or an algebra that is a direct sum of simple representations. It is an example of the general mathematical notion of semisimplicity.

In invariant theory, a branch of algebra, given a group G, a covariant is a G-equivariant polynomial map between linear representations V, W of G. It is a generalization of a classical convariant, which is a homogeneous polynomial map from the space of binary m-forms to the space of binary p-forms that is -equivariant.

References

Further reading