In mathematical invariant theory, an invariant of a binary form is a polynomial in the coefficients of a binary form in two variables x and y that remains invariant under the special linear group acting on the variables x and y.
A binary form (of degree n) is a homogeneous polynomial Σn
i=0 (n
i)an−ixn−iyi = anxn + (n
1)an−1xn−1y + ... + a0yn. The group SL2(C) acts on these forms by taking x to ax + by and y to cx + dy. This induces an action on the space spanned by a0, ..., an and on the polynomials in these variables. An invariant is a polynomial in these n + 1 variables a0, ..., an that is invariant under this action. More generally a covariant is a polynomial in a0, ..., an, x, y that is invariant, so an invariant is a special case of a covariant where the variables x and y do not occur. More generally still, a simultaneous invariant is a polynomial in the coefficients of several different forms in x and y.
In terms of representation theory, given any representation V of the group SL2(C) one can ask for the ring of invariant polynomials on V. Invariants of a binary form of degree n correspond to taking V to be the (n + 1)-dimensional irreducible representation, and covariants correspond to taking V to be the sum of the irreducible representations of dimensions 2 and n + 1.
The invariants of a binary form form a graded algebra, and Gordan (1868) proved that this algebra is finitely generated if the base field is the complex numbers.
Forms of degrees 2, 3, 4, 5, 6, 7, 8, 9, 10 are sometimes called quadrics, cubic, quartics, quintics, sextics, septics or septimics, octics or octavics, nonics, and decics or decimics. "Quantic" is an old name for a form of arbitrary degree. Forms in 1, 2, 3, 4, ... variables are called unary, binary, ternary, quaternary, ... forms.
A form f is itself a covariant of degree 1 and order n.
The discriminant of a form is an invariant.
The resultant of two forms is a simultaneous invariant of them.
The Hessian covariant of a form Hilbert (1993 , p.88) is the determinant of the Hessian matrix
It is a covariant of order 2n− 4 and degree 2.
The catalecticant is an invariant of degree n/2+1 of a binary form of even degree n.
The canonizant is a covariant of degree and order (n+1)/2 of a binary form of odd degree n.
The Jacobian
is a simultaneous covariant of two forms f, g.
The structure of the ring of invariants has been worked out for small degrees. Sylvester & Franklin (1879) gave tables of the numbers of generators of invariants and covariants for forms of degree up to 10, though the tables have a few minor errors for large degrees, mostly where a few invariants or covariants are omitted.
For linear forms ax + by the only invariants are constants. The algebra of covariants is generated by the form itself of degree 1 and order 1.
The algebra of invariants of the quadratic form ax2 + 2bxy + cy2 is a polynomial algebra in 1 variable generated by the discriminant b2−ac of degree 2. The algebra of covariants is a polynomial algebra in 2 variables generated by the discriminant together with the form f itself (of degree 1 and order 2). ( Schur 1968 , II.8)( Hilbert 1993 , XVI, XX)
The algebra of invariants of the cubic form ax3 + 3bx2y + 3cxy2 + dy3 is a polynomial algebra in 1 variable generated by the discriminant D = 3b2c2 + 6abcd− 4b3d− 4c3a−a2d2 of degree 4. The algebra of covariants is generated by the discriminant, the form itself (degree 1, order 3), the Hessian H (degree 2, order 2) and a covariant T of degree 3 and order 3. They are related by the syzygy 4H3=Df2-T2 of degree 6 and order 6. ( Schur 1968 , II.8)( Hilbert 1993 , XVII, XX)
The algebra of invariants of a quartic form is generated by invariants i, j of degrees 2, 3. This ring is naturally isomorphic to the ring of modular forms of level 1, with the two generators corresponding to the Eisenstein series E4 and E6. The algebra of covariants is generated by these two invariants together with the form f of degree 1 and order 4, the Hessian H of degree 2 and order 4, and a covariant T of degree 3 and order 6. They are related by a syzygy jf3 – Hf2i + 4H3 + T2 = 0 of degree 6 and order 12. ( Schur 1968 , II.8)( Hilbert 1993 , XVIII, XXII)
The algebra of invariants of a quintic form was found by Sylvester and is generated by invariants of degree 4, 8, 12, 18. The generators of degrees 4, 8, 12 generate a polynomial ring, which contains the square of Hermite's skew invariant of degree 18. The invariants are rather complicated to write out explicitly: Sylvester showed that the generators of degrees 4, 8, 12, 18 have 12, 59, 228, and 848 terms often with very large coefficients. ( Schur 1968 , II.9)( Hilbert 1993 , XVIII) The ring of covariants is generated by 23 covariants, one of which is the canonizant of degree 3 and order 3.
The algebra of invariants of a sextic form is generated by invariants of degree 2, 4, 6, 10, 15. The generators of degrees 2, 4, 6, 10 generate a polynomial ring, which contains the square of the generator of degree 15. ( Schur 1968 , II.9) The ring of covariants is generated by 26 covariants. The ring of invariants is closely related to the moduli space of curves of genus 2, because such a curve can be represented as a double cover of the projective line branched at 6 points, and the 6 points can be taken as the roots of a binary sextic.
The ring of invariants of binary septics is anomalous and has caused several published errors. Cayley claimed incorrectly that the ring of invariants is not finitely generated. Sylvester & Franklin (1879) gave lower bounds of 26 and 124 for the number of generators of the ring of invariants and the ring of covariants and observed that an unproved "fundamental postulate" would imply that equality holds. However von Gall (1888) showed that Sylvester's numbers are not equal to the numbers of generators, which are 30 for the ring of invariants and at least 130 for the ring of covariants, so Sylvester's fundamental postulate is wrong. von Gall (1888) and Dixmier & Lazard (1988) showed that the algebra of invariants of a degree 7 form is generated by a set with 1 invariant of degree 4, 3 of degree 8, 6 of degree 12, 4 of degree 14, 2 of degree 16, 9 of degree 18, and one of each of the degrees 20, 22, 26, 30. Cröni (2002) gives 147 generators for the ring of covariants.
Sylvester & Franklin (1879) showed that the ring of invariants of a degree 8 form is generated by 9 invariants of degrees 2, 3, 4, 5, 6, 7, 8, 9, 10, and the ring of covariants is generated by 69 covariants. August von Gall (von Gall (1880)) and Shioda (1967) confirmed the generators for the ring of invariants and showed that the ideal of relations between them is generated by elements of degrees 16, 17, 18, 19, 20.
Brouwer & Popoviciu (2010a) showed that the algebra of invariants of a degree 9 form is generated by 92 invariants. Cröni, Hagedorn, and Brouwer [1] computed 476 covariants, and Lercier & Olive showed that this list is complete.
Sylvester stated that the ring of invariants of binary decics is generated by 104 invariants the ring of covariants by 475 covariants; his list is to be correct for degrees up to 16 but wrong for higher degrees. Brouwer & Popoviciu (2010b) showed that the algebra of invariants of a degree 10 form is generated by 106 invariants. Hagedorn and Brouwer [1] computed 510 covariants, and Lercier & Olive showed that this list is complete.
The ring of invariants of binary forms of degree 11 is complicated and has not yet been described explicitly.
For forms of degree 12 Sylvester (1881) found that in degrees up to 14 there are 109 basic invariants. There are at least 4 more in higher degrees. The number of basic covariants is at least 989.
The number of generators for invariants and covariants of binary forms can be found in (sequence A036983 in the OEIS ) and (sequence A036984 in the OEIS ), respectively.
The covariants of a binary form are essentially the same as joint invariants of a binary form and a binary linear form. More generally, on can ask for the joint invariants (and covariants) of any collection of binary forms. Some cases that have been studied are listed below.
There are 1 basic invariant and 3 basic covariants.
There are 2 basic invariants and 5 basic covariants.
There are 4 basic invariants (essentially the covariants of a cubic) and 13 basic covariants.
There are 5 basic invariants (essentially the basic covariants of a quartic) and 20 basic covariants.
There are 23 basic invariants (essentially the basic covariants of a quintic) and 94 basic covariants.
The ring of invariants of n linear forms is generated by n(n–1)/2 invariants of degree 2. The ring of covariants of n linear forms is essentially the same as the ring of invariants of n+1 linear forms.
There are 3 basic invariants and 6 basic covariants.
The ring of invariants of a sum of m linear forms and n quadratic forms is generated by m(m–1)/2 + n(n+1)/2 generators in degree 2, nm(m+1)/2 + n(n–1)(n–2)/6 in degree 3, and m(m+1)n(n–1)/4 in degree 4.
For the number of generators of the ring of covariants, change m to m+1.
There are 5 basic invariants and 15 basic covariants
There are 6 basic invariants and 18 basic covariants
There are 29 basic invariants and 92 basic covariants
There are 20 basic invariants and 63 basic covariants
There are 8 basic invariants (3 of degree 2, 4 of degree 3, and 1 of degree 4) and 28 basic covariants. (Gordan gave 30 covariants, but Sylvester showed that two of these are reducible.)
The numbers of generators of invariants or covariants were given by Young (1898).
In mathematics, the discriminant of a polynomial is a quantity that depends on the coefficients and allows deducing some properties of the roots without computing them. More precisely, it is a polynomial function of the coefficients of the original polynomial. The discriminant is widely used in polynomial factoring, number theory, and algebraic geometry.
In mathematics, Hilbert's Nullstellensatz is a theorem that establishes a fundamental relationship between geometry and algebra. This relationship is the basis of algebraic geometry. It relates algebraic sets to ideals in polynomial rings over algebraically closed fields. This relationship was discovered by David Hilbert, who proved the Nullstellensatz in his second major paper on invariant theory in 1893.
In mathematics, a quadratic form is a polynomial with terms all of degree two. For example,
Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit description of polynomial functions that do not change, or are invariant, under the transformations from a given linear group. For example, if we consider the action of the special linear group SLn on the space of n by n matrices by left multiplication, then the determinant is an invariant of this action because the determinant of A X equals the determinant of X, when A is in SLn.
In algebra and in particular in algebraic combinatorics, the ring of symmetric functions is a specific limit of the rings of symmetric polynomials in n indeterminates, as n goes to infinity. This ring serves as universal structure in which relations between symmetric polynomials can be expressed in a way independent of the number n of indeterminates. Among other things, this ring plays an important role in the representation theory of the symmetric group.
In mathematics, Hilbert's fourteenth problem, that is, number 14 of Hilbert's problems proposed in 1900, asks whether certain algebras are finitely generated.
In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5. The polynomial is not homogeneous, because the sum of exponents does not match from term to term. The function defined by a homogeneous polynomial is always a homogeneous function.
In mathematics, the derivative is a fundamental construction of differential calculus and admits many possible generalizations within the fields of mathematical analysis, combinatorics, algebra, geometry, etc.
In mathematics, the resultant of two polynomials is a polynomial expression of their coefficients that is equal to zero if and only if the polynomials have a common root, or, equivalently, a common factor. In some older texts, the resultant is also called the eliminant.
In mathematics, in particular in algebra, polarization is a technique for expressing a homogeneous polynomial in a simpler fashion by adjoining more variables. Specifically, given a homogeneous polynomial, polarization produces a unique symmetric multilinear form from which the original polynomial can be recovered by evaluating along a certain diagonal.
In commutative algebra, the Hilbert function, the Hilbert polynomial, and the Hilbert series of a graded commutative algebra finitely generated over a field are three strongly related notions which measure the growth of the dimension of the homogeneous components of the algebra.
In algebra, the hyperdeterminant is a generalization of the determinant. Whereas a determinant is a scalar valued function defined on an n × n square matrix, a hyperdeterminant is defined on a multidimensional array of numbers or tensor. Like a determinant, the hyperdeterminant is a homogeneous polynomial with integer coefficients in the components of the tensor. Many other properties of determinants generalize in some way to hyperdeterminants, but unlike a determinant, the hyperdeterminant does not have a simple geometric interpretation in terms of volumes.
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term abstract algebra was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning. The abstract perspective on algebra has become so fundamental to advanced mathematics that it is simply called "algebra", while the term "abstract algebra" is seldom used except in pedagogy.
In mathematics, Cayley's Ω process, introduced by Arthur Cayley, is a relatively invariant differential operator on the general linear group, that is used to construct invariants of a group action.
The Classical Groups: Their Invariants and Representations is a mathematics book by Hermann Weyl, which describes classical invariant theory in terms of representation theory. It is largely responsible for the revival of interest in invariant theory, which had been almost killed off by David Hilbert's solution of its main problems in the 1890s.
This page is a glossary of terms in invariant theory. For descriptions of particular invariant rings, see invariants of a binary form, symmetric polynomials. For geometric terms used in invariant theory see the glossary of classical algebraic geometry. Definitions of many terms used in invariant theory can be found in, ,, ,, ,, , and the index to the fourth volume of Sylvester's collected works includes many of the terms invented by him.
In mathematics, a ternary cubic form is a homogeneous degree 3 polynomial in three variables.
In mathematics, a quaternary cubic form is a degree 3 homogeneous polynomial in four variables. The zeros form a cubic surface in 3-dimensional projective space.
Plethystic substitution is a shorthand notation for a common kind of substitution in the algebra of symmetric functions and that of symmetric polynomials. It is essentially basic substitution of variables, but allows for a change in the number of variables used.
In algebra, the fixed-point subring of an automorphism f of a ring R is the subring of the fixed points of f, that is,