E8 lattice

Last updated

In mathematics, the E8 lattice is a special lattice in R8. It can be characterized as the unique positive-definite, even, unimodular lattice of rank 8. The name derives from the fact that it is the root lattice of the E8 root system.

Contents

The norm [1] of the E8 lattice (divided by 2) is a positive definite even unimodular quadratic form in 8 variables, and conversely such a quadratic form can be used to construct a positive-definite, even, unimodular lattice of rank 8. The existence of such a form was first shown by H. J. S. Smith in 1867, [2] and the first explicit construction of this quadratic form was given by Korkin and Zolotarev in 1873. [3] The E8 lattice is also called the Gosset lattice after Thorold Gosset who was one of the first to study the geometry of the lattice itself around 1900. [4]

Lattice points

The E8 lattice is a discrete subgroup of R8 of full rank (i.e. it spans all of R8). It can be given explicitly by the set of points Γ8R8 such that

In symbols,

It is not hard to check that the sum of two lattice points is another lattice point, so that Γ8 is indeed a subgroup.

An alternative description of the E8 lattice which is sometimes convenient is the set of all points in Γ8R8 such that

In symbols,

The lattices Γ8 and Γ8 are isomorphic and one may pass from one to the other by changing the signs of any odd number of half-integer coordinates. The lattice Γ8 is sometimes called the even coordinate system for E8 while the lattice Γ8 is called the odd coordinate system. Unless we specify otherwise we shall work in the even coordinate system.

Properties

The E8 lattice Γ8 can be characterized as the unique lattice in R8 with the following properties:

Even unimodular lattices can occur only in dimensions divisible by 8. In dimension 16 there are two such lattices: Γ8 ⊕ Γ8 and Γ16 (constructed in an analogous fashion to Γ8. In dimension 24 there are 24 such lattices, called Niemeier lattices. The most important of these is the Leech lattice.

One possible basis for Γ8 is given by the columns of the (upper triangular) matrix

Γ8 is then the integral span of these vectors. All other possible bases are obtained from this one by right multiplication by elements of GL(8,Z).

The shortest nonzero vectors in Γ8 have length equal to √2. There are 240 such vectors:

These form a root system of type E8. The lattice Γ8 is equal to the E8 root lattice, meaning that it is given by the integral span of the 240 roots. Any choice of 8 simple roots gives a basis for Γ8.

Symmetry group

The automorphism group (or symmetry group) of a lattice in Rn is defined as the subgroup of the orthogonal group O(n) that preserves the lattice. The symmetry group of the E8 lattice is the Weyl/Coxeter group of type E8. This is the group generated by reflections in the hyperplanes orthogonal to the 240 roots of the lattice. Its order is given by

The E8 Weyl group contains a subgroup of order 128·8! consisting of all permutations of the coordinates and all even sign changes. This subgroup is the Weyl group of type D8. The full E8 Weyl group is generated by this subgroup and the block diagonal matrix H4H4 where H4 is the Hadamard matrix

Geometry

See 521 honeycomb

The E8 lattice points are the vertices of the 521 honeycomb, which is composed of regular 8-simplex and 8-orthoplex facets. This honeycomb was first studied by Gosset who called it a 9-ic semi-regular figure [4] (Gosset regarded honeycombs in n dimensions as degenerate n+1 polytopes). In Coxeter's notation, [5] Gosset's honeycomb is denoted by 521 and has the Coxeter-Dynkin diagram:

CDel nodea 1.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel branch.pngCDel 3a.pngCDel nodea.pngCDel 3a.pngCDel nodea.png

This honeycomb is highly regular in the sense that its symmetry group (the affine Weyl group) acts transitively on the k-faces for k ≤ 6. All of the k-faces for k ≤ 7 are simplices.

The vertex figure of Gosset's honeycomb is the semiregular E8 polytope (421 in Coxeter's notation) given by the convex hull of the 240 roots of the E8 lattice.

Each point of the E8 lattice is surrounded by 2160 8-orthoplexes and 17280 8-simplices. The 2160 deep holes near the origin are exactly the halves of the norm 4 lattice points. The 17520 norm 8 lattice points fall into two classes (two orbits under the action of the E8 automorphism group): 240 are twice the norm 2 lattice points while 17280 are 3 times the shallow holes surrounding the origin.

A hole in a lattice is a point in the ambient Euclidean space whose distance to the nearest lattice point is a local maximum. (In a lattice defined as a uniform honeycomb these points correspond to the centers of the facets volumes.) A deep hole is one whose distance to the lattice is a global maximum. There are two types of holes in the E8 lattice:

Sphere packings and kissing numbers

The E8 lattice is remarkable in that it gives optimal solutions to the sphere packing problem and the kissing number problem in 8 dimensions.

The sphere packing problem asks what is the densest way to pack (solid) n-dimensional spheres of a fixed radius in Rn so that no two spheres overlap. Lattice packings are special types of sphere packings where the spheres are centered at the points of a lattice. Placing spheres of radius 1/2 at the points of the E8 lattice gives a lattice packing in R8 with a density of

A 1935 paper of Hans Frederick Blichfeldt proved that this is the maximum density that can be achieved by a lattice packing in 8 dimensions. [6] Furthermore, the E8 lattice is the unique lattice (up to isometries and rescalings) with this density. [7] Maryna Viazovska proved in 2016 that this density is, in fact, optimal even among irregular packings. [8] [9]

The kissing number problem asks what is the maximum number of spheres of a fixed radius that can touch (or "kiss") a central sphere of the same radius. In the E8 lattice packing mentioned above any given sphere touches 240 neighboring spheres. This is because there are 240 lattice vectors of minimum nonzero norm (the roots of the E8 lattice). It was shown in 1979 that this is the maximum possible number in 8 dimensions. [10] [11]

The sphere packing problem and the kissing number problem are remarkably difficult and optimal solutions are only known in 1, 2, 3, 8, and 24 dimensions (plus dimension 4 for the kissing number problem). The fact that solutions are known in dimensions 8 and 24 follows in part from the special properties of the E8 lattice and its 24-dimensional cousin, the Leech lattice.

Theta function

One can associate to any (positive-definite) lattice Λ a theta function given by

The theta function of a lattice is then a holomorphic function on the upper half-plane. Furthermore, the theta function of an even unimodular lattice of rank n is actually a modular form of weight n/2. The theta function of an integral lattice is often written as a power series in so that the coefficient of qn gives the number of lattice vectors of norm n.

Up to normalization, there is a unique modular form of weight 4 and level 1: the Eisenstein series G4(τ). The theta function for the E8 lattice must then be proportional to G4(τ). The normalization can be fixed by noting that there is a unique vector of norm 0. This gives

where σ3(n) is the divisor function. It follows that the number of E8 lattice vectors of norm 2n is 240 times the sum of the cubes of the divisors of n. The first few terms of this series are given by (sequence A004009 in the OEIS ):

The E8 theta function may be written in terms of the Jacobi theta functions as follows:

where

Note that the j-function can be expressed as,

Other constructions

Hamming code

The E8 lattice is very closely related to the (extended) Hamming code H(8,4) and can, in fact, be constructed from it. The Hamming code H(8,4) is a binary code of length 8 and rank 4; that is, it is a 4-dimensional subspace of the finite vector space (F2)8. Writing elements of (F2)8 as 8-bit integers in hexadecimal, the code H(8,4) can by given explicitly as the set

{00, 0F, 33, 3C, 55, 5A, 66, 69, 96, 99, A5, AA, C3, CC, F0, FF}.

The code H(8,4) is significant partly because it is a Type II self-dual code. It has a minimum nonzero Hamming weight 4, meaning that any two codewords differ by at least 4 bits. It is the largest length 8 binary code with this property.

One can construct a lattice Λ from a binary code C of length n by taking the set of all vectors x in Zn such that x is congruent (modulo 2) to a codeword of C. [12] It is often convenient to rescale Λ by a factor of 1/2,

Applying this construction a Type II self-dual code gives an even, unimodular lattice. In particular, applying it to the Hamming code H(8,4) gives an E8 lattice. It is not entirely trivial, however, to find an explicit isomorphism between this lattice and the lattice Γ8 defined above.

Integral octonions

The E8 lattice is also closely related to the nonassociative algebra of real octonions O. It is possible to define the concept of an integral octonion analogous to that of an integral quaternion. The integral octonions naturally form a lattice inside O. This lattice is just a rescaled E8 lattice. (The minimum norm in the integral octonion lattice is 1 rather than 2). Embedded in the octonions in this manner the E8 lattice takes on the structure of a nonassociative ring.

Fixing a basis (1, i, j, k, ℓ, ℓi, ℓj, ℓk) of unit octonions, one can define the integral octonions as a maximal order containing this basis. (One must, of course, extend the definitions of order and ring to include the nonassociative case). This amounts to finding the largest subring of O containing the units on which the expressions x*x (the norm of x) and x + x* (twice the real part of x) are integer-valued. There are actually seven such maximal orders, one corresponding to each of the seven imaginary units. However, all seven maximal orders are isomorphic. One such maximal order is generated by the octonions i, j, and 1/2 (i + j + k + ℓ).

A detailed account of the integral octonions and their relation to the E8 lattice can be found in Conway and Smith (2003).

Example definition of integral octonions

Consider octonion multiplication defined by triads: 137, 267, 457, 125, 243, 416, 356. Then integral octonions form vectors:

1) , i=0, 1, ..., 7

2) , indexes abc run through the seven triads 124, 235, 346, 457, 561, 672, 713

3) , indexes pqrs run through the seven tetrads 3567, 1467, 1257, 1236, 2347, 1345, 2456.

Imaginary octonions in this set, namely 14 from 1) and 7*16=112 from 3), form the roots of the Lie algebra . Along with the remaining 2+112 vectors we obtain 240 vectors that form roots of Lie algebra . [13]

Applications

In 1982 Michael Freedman produced an example of a topological 4-manifold, called the E8 manifold, whose intersection form is given by the E8 lattice. This manifold is an example of a topological manifold which admits no smooth structure and is not even triangulable.

In string theory, the heterotic string is a peculiar hybrid of a 26-dimensional bosonic string and a 10-dimensional superstring. In order for the theory to work correctly, the 16 mismatched dimensions must be compactified on an even, unimodular lattice of rank 16. There are two such lattices: Γ8>⊕Γ8 and Γ16 (constructed in a fashion analogous to that of Γ8). These lead to two version of the heterotic string known as the E8×E8 heterotic string and the SO(32) heterotic string.

See also

Related Research Articles

In mathematics, the octonions are a normed division algebra over the real numbers, a kind of hypercomplex number system. The octonions are usually represented by the capital letter O, using boldface O or blackboard bold . Octonions have eight dimensions; twice the number of dimensions of the quaternions, of which they are an extension. They are noncommutative and nonassociative, but satisfy a weaker form of associativity; namely, they are alternative. They are also power associative.

<span class="mw-page-title-main">Root system</span> Geometric arrangements of points, foundational to Lie theory

In mathematics, a root system is a configuration of vectors in a Euclidean space satisfying certain geometrical properties. The concept is fundamental in the theory of Lie groups and Lie algebras, especially the classification and representation theory of semisimple Lie algebras. Since Lie groups and Lie algebras have become important in many parts of mathematics during the twentieth century, the apparently special nature of root systems belies the number of areas in which they are applied. Further, the classification scheme for root systems, by Dynkin diagrams, occurs in parts of mathematics with no overt connection to Lie theory. Finally, root systems are important for their own sake, as in spectral graph theory.

In mathematics, a modular form is a (complex) analytic function on the upper half-plane, , that satisfies:

In mathematics, the Leech lattice is an even unimodular lattice Λ24 in 24-dimensional Euclidean space, which is one of the best models for the kissing number problem. It was discovered by John Leech. It may also have been discovered by Ernst Witt in 1940.

<span class="mw-page-title-main">Theta function</span> Special functions of several complex variables

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.

<i>j</i>-invariant Modular function in mathematics

In mathematics, Felix Klein's j-invariant or j function, regarded as a function of a complex variable τ, is a modular function of weight zero for special linear group SL(2, Z) defined on the upper half-plane of complex numbers. It is the unique such function that is holomorphic away from a simple pole at the cusp such that

In mathematics, the Poisson summation formula is an equation that relates the Fourier series coefficients of the periodic summation of a function to values of the function's continuous Fourier transform. Consequently, the periodic summation of a function is completely defined by discrete samples of the original function's Fourier transform. And conversely, the periodic summation of a function's Fourier transform is completely defined by discrete samples of the original function. The Poisson summation formula was discovered by Siméon Denis Poisson and is sometimes called Poisson resummation.

<span class="mw-page-title-main">Sinc function</span> Special mathematical function defined as sin(x)/x

In mathematics, physics and engineering, the sinc function, denoted by sinc(x), has two forms, normalized and unnormalized.

In mathematics, a Hurwitz quaternion is a quaternion whose components are either all integers or all half-integers. The set of all Hurwitz quaternions is

Eisenstein series, named after German mathematician Gotthold Eisenstein, are particular modular forms with infinite series expansions that may be written down directly. Originally defined for the modular group, Eisenstein series can be generalized in the theory of automorphic forms.

<span class="mw-page-title-main">Chiral model</span> Model of mesons in the massless quark limit

In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of a Lie group as its target manifold. When the model was originally introduced, this Lie group was the SU(N), where N is the number of quark flavors. The Riemannian metric of the target manifold is given by a positive constant multiplied by the Killing form acting upon the Maurer–Cartan form of SU(N).

<span class="mw-page-title-main">Directional statistics</span> Subdiscipline of statistics

Directional statistics is the subdiscipline of statistics that deals with directions, axes or rotations in Rn. More generally, directional statistics deals with observations on compact Riemannian manifolds including the Stiefel manifold.

In probability and statistics, a circular distribution or polar distribution is a probability distribution of a random variable whose values are angles, usually taken to be in the range [0, 2π). A circular distribution is often a continuous probability distribution, and hence has a probability density, but such distributions can also be discrete, in which case they are called circular lattice distributions. Circular distributions can be used even when the variables concerned are not explicitly angles: the main consideration is that there is not usually any real distinction between events occurring at the opposite ends of the range, and the division of the range could notionally be made at any point.

In geometry and mathematical group theory, a unimodular lattice is an integral lattice of determinant 1 or −1. For a lattice in n-dimensional Euclidean space, this is equivalent to requiring that the volume of any fundamental domain for the lattice be 1.

In mathematics, the Smith–Minkowski–Siegel mass formula is a formula for the sum of the weights of the lattices in a genus, weighted by the reciprocals of the orders of their automorphism groups. The mass formula is often given for integral quadratic forms, though it can be generalized to quadratic forms over any algebraic number field.

Quartic or biquadratic reciprocity is a collection of theorems in elementary and algebraic number theory that state conditions under which the congruence x4p is solvable; the word "reciprocity" comes from the form of some of these theorems, in that they relate the solvability of the congruence x4p to that of x4q.

<span class="mw-page-title-main">Wrapped normal distribution</span>

In probability theory and directional statistics, a wrapped normal distribution is a wrapped probability distribution that results from the "wrapping" of the normal distribution around the unit circle. It finds application in the theory of Brownian motion and is a solution to the heat equation for periodic boundary conditions. It is closely approximated by the von Mises distribution, which, due to its mathematical simplicity and tractability, is the most commonly used distribution in directional statistics.

<span class="mw-page-title-main">Anatoly Karatsuba</span> Russian mathematician (1937–2008)

Anatoly Alexeyevich Karatsuba was a Russian mathematician working in the field of analytic number theory, p-adic numbers and Dirichlet series.

In mathematics, the theta function of a lattice is a function whose coefficients give the number of vectors of a given norm.

In number theory, the sum of squares function is an arithmetic function that gives the number of representations for a given positive integer n as the sum of k squares, where representations that differ only in the order of the summands or in the signs of the numbers being squared are counted as different. It is denoted by rk(n).

References

  1. 1 2 In this article, the norm of a vector refers to its length squared (the square of the ordinary norm).
  2. Smith, H. J. S. (1867). "On the orders and genera of quadratic forms containing more than three indeterminates". Proceedings of the Royal Society. 16: 197–208. doi: 10.1098/rspl.1867.0036 .
  3. Korkin, A.; Zolotarev, G. (1873). "Sur les formes quadratiques". Mathematische Annalen. 6: 366–389. doi:10.1007/BF01442795.
  4. 1 2 Gosset, Thorold (1900). "On the regular and semi-regular figures in space of n dimensions". Messenger of Mathematics . 29: 43–48.
  5. Coxeter, H. S. M. (1973). Regular Polytopes (3rd ed.). New York: Dover Publications. ISBN   0-486-61480-8.
  6. Blichfeldt, H. F. (1935). "The minimum values of positive quadratic forms in six, seven and eight variables". Mathematische Zeitschrift. 39: 1–15. doi:10.1007/BF01201341. Zbl   0009.24403.
  7. Vetčinkin, N. M. (1980). "Uniqueness of classes of positive quadratic forms on which values of the Hermite constant are attained for 6 ≤ n ≤ 8". Geometry of positive quadratic forms. Vol. 152. Trudy Math. Inst. Steklov. pp. 34–86.
  8. Klarreich, Erica (30 March 2016). "Sphere Packing Solved in Higher Dimensions". Quanta Magazine .
  9. Viazovska, Maryna (2017). "The sphere packing problem in dimension 8". arXiv: 1603.04246v2 .
  10. Levenshtein, V. I. (1979). "On bounds for packing in n-dimensional Euclidean space". Soviet Mathematics – Doklady. 20: 417–421.
  11. Odlyzko, A. M.; Sloane, N. J. A. (1979). "New bounds on the number of unit spheres that can touch a unit sphere in n dimensions". Journal of Combinatorial Theory. A26: 210–214. CiteSeerX   10.1.1.392.3839 . doi:10.1016/0097-3165(79)90074-8. Zbl   0408.52007. This is also Chapter 13 of Conway and Sloane (1998).
  12. This is the so-called "Construction A" in Conway and Sloane (1998). See §2 of Ch. 5.
  13. Koca, Mehmet; Koç, Ramazan; Koca, Nazife Ö. (20 October 2005). "The Chevalley group of order 12096 and the octonionic root system of , Linear Algebra and its Applications". pp. 808–823. arXiv: hep-th/0509189v2 .