Kissing number

Last updated

In geometry, the kissing number of a mathematical space is defined as the greatest number of non-overlapping unit spheres that can be arranged in that space such that they each touch a common unit sphere. For a given sphere packing (arrangement of spheres) in a given space, a kissing number can also be defined for each individual sphere as the number of spheres it touches. For a lattice packing the kissing number is the same for every sphere, but for an arbitrary sphere packing the kissing number may vary from one sphere to another.

Contents

Other names for kissing number that have been used are Newton number (after the originator of the problem), and contact number.

In general, the kissing number problem seeks the maximum possible kissing number for n-dimensional spheres in (n + 1)-dimensional Euclidean space. Ordinary spheres correspond to two-dimensional closed surfaces in three-dimensional space.

Finding the kissing number when centers of spheres are confined to a line (the one-dimensional case) or a plane (two-dimensional case) is trivial. Proving a solution to the three-dimensional case, despite being easy to conceptualise and model in the physical world, eluded mathematicians until the mid-20th century. [1] [2] Solutions in higher dimensions are considerably more challenging, and only a handful of cases have been solved exactly. For others, investigations have determined upper and lower bounds, but not exact solutions. [3]

Known greatest kissing numbers

One dimension

In one dimension, [4] the kissing number is 2:

Kissing-1d.svg

Two dimensions

In two dimensions, the kissing number is 6:

Kissing-2d.svg

Proof: Consider a circle with center C that is touched by circles with centers C1, C2, .... Consider the rays CCi. These rays all emanate from the same center C, so the sum of angles between adjacent rays is 360°.

Assume by contradiction that there are more than six touching circles. Then at least two adjacent rays, say CC1 and CC2, are separated by an angle of less than 60°. The segments C Ci have the same length – 2r – for all i. Therefore, the triangle CC1C2 is isosceles, and its third side – C1C2 – has a side length of less than 2r. Therefore, the circles 1 and 2 intersect – a contradiction. [5]

A highly symmetrical realization of the kissing number 12 in three dimensions is by aligning the centers of outer spheres with vertices of a regular icosahedron. This leaves slightly more than 0.1 of the radius between two nearby spheres. Kissing-3d.png
A highly symmetrical realization of the kissing number 12 in three dimensions is by aligning the centers of outer spheres with vertices of a regular icosahedron. This leaves slightly more than 0.1 of the radius between two nearby spheres.

Three dimensions

In three dimensions, the kissing number is 12, but the correct value was much more difficult to establish than in dimensions one and two. It is easy to arrange 12 spheres so that each touches a central sphere, with a lot of space left over, and it is not obvious that there is no way to pack in a 13th sphere. (In fact, there is so much extra space that any two of the 12 outer spheres can exchange places through a continuous movement without any of the outer spheres losing contact with the center one.) This was the subject of a famous disagreement between mathematicians Isaac Newton and David Gregory. Newton correctly thought that the limit was 12; Gregory thought that a 13th could fit. Some incomplete proofs that Newton was correct were offered in the nineteenth century, most notably one by Reinhold Hoppe, but the first correct proof (according to Brass, Moser, and Pach) did not appear until 1953. [1] [2] [6]

The twelve neighbors of the central sphere correspond to the maximum bulk coordination number of an atom in a crystal lattice in which all atoms have the same size (as in a chemical element). A coordination number of 12 is found in a cubic close-packed or a hexagonal close-packed structure.

Larger dimensions

In four dimensions, it was known for some time that the answer was either 24 or 25. It is straightforward to produce a packing of 24 spheres around a central sphere (one can place the spheres at the vertices of a suitably scaled 24-cell centered at the origin). As in the three-dimensional case, there is a lot of space left over — even more, in fact, than for n = 3 — so the situation was even less clear. In 2003, Oleg Musin proved the kissing number for n = 4 to be 24. [7] [8]

The kissing number in n dimensions is unknown for n > 4, except for n = 8 (where the kissing number is 240), and n = 24 (where it is 196,560). [9] [10] The results in these dimensions stem from the existence of highly symmetrical lattices: the E8 lattice and the Leech lattice.

If arrangements are restricted to lattice arrangements, in which the centres of the spheres all lie on points in a lattice, then this restricted kissing number is known for n = 1 to 9 and n = 24 dimensions. [11] For 5, 6, and 7 dimensions the arrangement with the highest known kissing number found so far is the optimal lattice arrangement, but the existence of a non-lattice arrangement with a higher kissing number has not been excluded.

Some known bounds

The following table lists some known bounds on the kissing number in various dimensions. [12] The dimensions in which the kissing number is known are listed in boldface.

Rough volume estimates show that kissing number in n dimensions grows exponentially in n. The base of exponential growth is not known. The grey area in the above plot represents the possible values between known upper and lower bounds. Circles represent values that are known exactly. Kissing growth.svg
Rough volume estimates show that kissing number in n dimensions grows exponentially in n. The base of exponential growth is not known. The grey area in the above plot represents the possible values between known upper and lower bounds. Circles represent values that are known exactly.
DimensionLower
bound
Upper
bound
12
2 6
3 12
4 24 [7]
5 40 44
6 72 78
7 126 134
8 240
9306363
10510553
11592868
128401,355
131,1542,064
141,9323,174
152,5644,853
164,3207,320
175,34610,978
187,39816,406
1910,66824,417
2017,40036,195
2127,72053,524
2249,89680,810
2393,150122,351
24 196,560

Generalization

The kissing number problem can be generalized to the problem of finding the maximum number of non-overlapping congruent copies of any convex body that touch a given copy of the body. There are different versions of the problem depending on whether the copies are only required to be congruent to the original body, translates of the original body, or translated by a lattice. For the regular tetrahedron, for example, it is known that both the lattice kissing number and the translative kissing number are equal to 18, whereas the congruent kissing number is at least 56. [13]

Algorithms

There are several approximation algorithms on intersection graphs where the approximation ratio depends on the kissing number. [14] For example, there is a polynomial-time 10-approximation algorithm to find a maximum non-intersecting subset of a set of rotated unit squares.

Mathematical statement

The kissing number problem can be stated as the existence of a solution to a set of inequalities. Let be a set of ND-dimensional position vectors of the centres of the spheres. The condition that this set of spheres can lie round the centre sphere without overlapping is: [15]

Thus the problem for each dimension can be expressed in the existential theory of the reals. However, general methods of solving problems in this form take at least exponential time which is why this problem has only been solved up to four dimensions. By adding additional variables, this can be converted to a single quartic equation in N(N  1)/2 + DN variables: [16]

Therefore, to solve the case in D = 5 dimensions and N =  40  + 1 vectors would be equivalent to determining the existence of real solutions to a quartic polynomial in 1025 variables. For the D = 24 dimensions and N =  196560  + 1, the quartic would have 19,322,732,544 variables. An alternative statement in terms of distance geometry is given by the distances squared between the mth and nth sphere:

This must be supplemented with the condition that the Cayley–Menger determinant is zero for any set of points which forms a (D + 1) simplex in D dimensions, since that volume must be zero. Setting gives a set of simultaneous polynomial equations in just y which must be solved for real values only. The two methods, being entirely equivalent, have various different uses. For example, in the second case one can randomly alter the values of the y by small amounts to try to minimise the polynomial in terms of the y.

See also

Notes

  1. 1 2 Conway, John H.; Neil J.A. Sloane (1999). Sphere Packings, Lattices and Groups (3rd ed.). New York: Springer-Verlag. p.  21. ISBN   0-387-98585-9.
  2. 1 2 Brass, Peter; Moser, W. O. J.; Pach, János (2005). Research problems in discrete geometry. Springer. p.  93. ISBN   978-0-387-23815-9.
  3. Mittelmann, Hans D.; Vallentin, Frank (2010). "High accuracy semidefinite programming bounds for kissing numbers". Experimental Mathematics . 19 (2): 174–178. arXiv: 0902.1105 . Bibcode:2009arXiv0902.1105M. doi:10.1080/10586458.2010.10129070. S2CID   218279.
  4. Note that in one dimension, "spheres" are just pairs of points separated by the unit distance. (The vertical dimension of one-dimensional illustration is merely evocative.) Unlike in higher dimensions, it is necessary to specify that the interior of the spheres (the unit-length open intervals) do not overlap in order for there to be a finite packing density.
  5. See also Lemma 3.1 in Marathe, M. V.; Breu, H.; Hunt, H. B.; Ravi, S. S.; Rosenkrantz, D. J. (1995). "Simple heuristics for unit disk graphs". Networks. 25 (2): 59. arXiv: math/9409226 . doi:10.1002/net.3230250205.
  6. Zong, Chuanming (2008). "The kissing number, blocking number and covering number of a convex body". In Goodman, Jacob E.; Pach, J├ínos; Pollack, Richard (eds.). Surveys on Discrete and Computational Geometry: Twenty Years Later (AMS-IMS-SIAM Joint Summer Research Conference, June 18ÔÇô22, 2006, Snowbird, Utah). Contemporary Mathematics. Vol. 453. Providence, RI: American Mathematical Society. pp. 529–548. doi:10.1090/conm/453/08812. ISBN   9780821842393. MR   2405694..
  7. 1 2 O. R. Musin (2003). "The problem of the twenty-five spheres". Russ. Math. Surv. 58 (4): 794–795. Bibcode:2003RuMaS..58..794M. doi:10.1070/RM2003v058n04ABEH000651. S2CID   250839515.
  8. Pfender, Florian; Ziegler, Günter M. (September 2004). "Kissing numbers, sphere packings, and some unexpected proofs" (PDF). Notices of the American Mathematical Society: 873–883..
  9. Levenshtein, Vladimir I. (1979). "О границах для упаковок в n-мерном евклидовом пространстве" [On bounds for packings in n-dimensional Euclidean space]. Doklady Akademii Nauk SSSR (in Russian). 245 (6): 1299–1303.
  10. Odlyzko, A. M.; Sloane, N. J. A. (1979). "New bounds on the number of unit spheres that can touch a unit sphere in n dimensions". Journal of Combinatorial Theory . Series A. 26 (2): 210–214. doi: 10.1016/0097-3165(79)90074-8 .
  11. Weisstein, Eric W. "Kissing Number". MathWorld .
  12. Machado, Fabrício C.; Oliveira, Fernando M. (2018). "Improving the Semidefinite Programming Bound for the Kissing Number by Exploiting Polynomial Symmetry". Experimental Mathematics . 27 (3): 362–369. arXiv: 1609.05167 . doi:10.1080/10586458.2017.1286273. S2CID   52903026.
  13. Lagarias, Jeffrey C.; Zong, Chuanming (December 2012). "Mysteries in packing regular tetrahedra" (PDF). Notices of the American Mathematical Society: 1540–1549.
  14. Kammer, Frank; Tholey, Torsten (July 2012). "Approximation Algorithms for Intersection Graphs". Algorithmica. 68 (2): 312–336. doi:10.1007/s00453-012-9671-1. S2CID   3065780.
  15. Numbers m and n run from 1 to N. is the sequence of the N positional vectors. As the condition behind the second universal quantifier () does not change if m and n are exchanged, it is sufficient to let this quantor extend just over . For simplification the sphere radiuses are assumed to be 1/2.
  16. Concerning the matrix only the entries having m < n are needed. Or, equivalent, the matrix can be assumed to be antisymmetric. Anyway the matrix has justN(N  1)/2 free scalar variables. In addition, there are ND-dimensional vectors xn, which correspondent to a matrix of N column vectors.

Related Research Articles

<i>n</i>-sphere Generalized sphere of dimension n (mathematics)

In mathematics, an n-sphere or hypersphere is an n-dimensional generalization of the 1-dimensional circle and 2-dimensional sphere to any non-negative integer n. The n-sphere is the setting for n-dimensional spherical geometry.

<span class="mw-page-title-main">Packing problems</span> Problems which attempt to find the most efficient way to pack objects into containers

Packing problems are a class of optimization problems in mathematics that involve attempting to pack objects together into containers. The goal is to either pack a single container as densely as possible or pack all objects using as few containers as possible. Many of these problems can be related to real-life packaging, storage and transportation issues. Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap.

In mathematics, a quadratic form is a polynomial with terms all of degree two. For example,

<span class="mw-page-title-main">Affine space</span> Euclidean space without distance and angles

In mathematics, an affine space is a geometric structure that generalizes some of the properties of Euclidean spaces in such a way that these are independent of the concepts of distance and measure of angles, keeping only the properties related to parallelism and ratio of lengths for parallel line segments. Affine space is the setting for affine geometry.

In mathematics, the Leech lattice is an even unimodular lattice Λ24 in 24-dimensional Euclidean space, which is one of the best models for the kissing number problem. It was discovered by John Leech. It may also have been discovered by Ernst Witt in 1940.

<span class="mw-page-title-main">Sphere packing</span> An arrangement of non-overlapping spheres within a containing space

In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space. However, sphere packing problems can be generalised to consider unequal spheres, spaces of other dimensions or to non-Euclidean spaces such as hyperbolic space.

In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension n − 1, which is embedded in an ambient space of dimension n, generally a Euclidean space, an affine space or a projective space. Hypersurfaces share, with surfaces in a three-dimensional space, the property of being defined by a single implicit equation, at least locally, and sometimes globally.

<span class="mw-page-title-main">Kakeya set</span> Shape containing unit line segments in all directions

In mathematics, a Kakeya set, or Besicovitch set, is a set of points in Euclidean space which contains a unit line segment in every direction. For instance, a disk of radius 1/2 in the Euclidean plane, or a ball of radius 1/2 in three-dimensional space, forms a Kakeya set. Much of the research in this area has studied the problem of how small such sets can be. Besicovitch showed that there are Besicovitch sets of measure zero.

In mathematics, a polynomially reflexive space is a Banach space X, on which the space of all polynomials in each degree is a reflexive space.

<span class="mw-page-title-main">Arrangement of hyperplanes</span> Partition of space by a hyperplanes

In geometry and combinatorics, an arrangement of hyperplanes is an arrangement of a finite set A of hyperplanes in a linear, affine, or projective space S. Questions about a hyperplane arrangement A generally concern geometrical, topological, or other properties of the complement, M(A), which is the set that remains when the hyperplanes are removed from the whole space. One may ask how these properties are related to the arrangement and its intersection semilattice. The intersection semilattice of A, written L(A), is the set of all subspaces that are obtained by intersecting some of the hyperplanes; among these subspaces are S itself, all the individual hyperplanes, all intersections of pairs of hyperplanes, etc. (excluding, in the affine case, the empty set). These intersection subspaces of A are also called the flats ofA. The intersection semilattice L(A) is partially ordered by reverse inclusion.

<span class="mw-page-title-main">Close-packing of equal spheres</span> Dense arrangement of congruent spheres in an infinite, regular arrangement

In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement. Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occupied by spheres – that can be achieved by a lattice packing is

<span class="mw-page-title-main">Moment problem</span> Trying to map moments to a measure that generates them

In mathematics, a moment problem arises as the result of trying to invert the mapping that takes a measure to the sequence of moments

In mathematics, a homogeneous polynomial, sometimes called quantic in older texts, is a polynomial whose nonzero terms all have the same degree. For example, is a homogeneous polynomial of degree 5, in two variables; the sum of the exponents in each term is always 5. The polynomial is not homogeneous, because the sum of exponents does not match from term to term. The function defined by a homogeneous polynomial is always a homogeneous function.

In mathematics, the E8 lattice is a special lattice in R8. It can be characterized as the unique positive-definite, even, unimodular lattice of rank 8. The name derives from the fact that it is the root lattice of the E8 root system.

In model theory and related areas of mathematics, a type is an object that describes how a element or finite collection of elements in a mathematical structure might behave. More precisely, it is a set of first-order formulas in a language L with free variables x1, x2,..., xn that are true of a set of n-tuples of an L-structure . Depending on the context, types can be complete or partial and they may use a fixed set of constants, A, from the structure . The question of which types represent actual elements of leads to the ideas of saturated models and omitting types.

In mathematics, a Euclidean distance matrix is an n×n matrix representing the spacing of a set of n points in Euclidean space. For points in k-dimensional space k, the elements of their Euclidean distance matrix A are given by squares of distances between them. That is

In mathematics, a set of n functions f1, f2, ..., fn is unisolvent on a domain Ω if the vectors

In mathematics, a sequence of n real numbers can be understood as a location in n-dimensional space. When n = 8, the set of all such locations is called 8-dimensional space. Often such spaces are studied as vector spaces, without any notion of distance. Eight-dimensional Euclidean space is eight-dimensional space equipped with the Euclidean metric.

A sum-of-squares optimization program is an optimization problem with a linear cost function and a particular type of constraint on the decision variables. These constraints are of the form that when the decision variables are used as coefficients in certain polynomials, those polynomials should have the polynomial SOS property. When fixing the maximum degree of the polynomials involved, sum-of-squares optimization is also known as the Lasserre hierarchy of relaxations in semidefinite programming.

In mathematics, the theory of finite sphere packing concerns the question of how a finite number of equally-sized spheres can be most efficiently packed. The question of packing finitely many spheres has only been investigated in detail in recent decades, with much of the groundwork being laid by László Fejes Tóth.

References