Newton disc

Last updated

Colour distribution of a Newton disc Disque newton.png
Colour distribution of a Newton disc

The Newton disc, also known as the disappearing colour disc, is a well-known physics experiment with a rotating disc with segments in different colours (usually Newton's primary colours: red, orange, yellow, green, blue, indigo, and violet, commonly known by the abbreviation ROYGBIV) appearing as white (or off-white or grey) when it's spun rapidly about its axis.

Contents

This type of mix of light stimuli is called temporal optical mixing, a version of additive-averaging mixing. [1] The concept that human visual perception cannot distinguish details of high-speed movements is popularly known as persistence of vision.

The disc is named after Isaac Newton. Although he published a circular diagram with segments for the primary colours that he had discovered (i.e. a colour wheel), it is unlikely that he ever used a spinning disc to demonstrate the principles of light. He actually referred to the mixture of colours painted on a spinning top as "dirty" and described several different experiments that support his theory.

Transparent variations for magic lantern projection have been produced. [2]

History

Around 165 CE, Ptolemy described in his book Optics a rotating potter's wheel with different colours on it. He noted how the different colours of sectors mixed together into one colour and how dots appeared as circles when the wheel was spinning very fast. When lines are drawn across the axis of the disc they make the whole surface appear to be of a uniform colour. "The visual impression that is created in the first revolution is invariably followed by repeated instances that subsequently produce an identical impression. This also happens in the case of shooting stars, whose light seems distended on account of their speed of motion, all according to the amount of perceptible distance it passes along with the sensible impression that arises in the visual faculty." [3] [4]

Porphyry (c.243c.305) wrote in his commentary on Ptolemy's Harmonics how the senses are not stable but confused and inaccurate. Certain intervals between repeated impressions are not detected. A white or black spot on a spinning cone (or top) appears as a circle of that colour and a line on the top makes the whole surface appear in that colour. "Because of the swiftness of the movement we receive the impression of the line on every part of the cone as the line moves." [5]

In the 11th century Ibn al-Haytham, who was familiar with Ptolemy's writings, described how coloured lines on a spinning top could not be discerned as different colours but appeared as one new colour composed of all of the colours of the lines. He deducted that sight needs some time to discern a colour. al-Haytam also noted that the top appeared motionless when spun extremely quick "for none of its points remains fixed in the same spot for any perceptible time". [6]

After Ibn al-Haytham, Fakhr al-Din al-Razi (d. 1209) performed the spinning disk experiment, and like his predecessors he concluded that it shows an optical illusion. However, the astronomer-mathematician Nasir al-Din al-Tusi described al-Razi's text and arrived at a very different conclusion. Tusi introduced a common sense organ that forwards colour impressions to the soul. When colours change too fast, this organ can only pass on the mixed colour. One of Tusi's students was Qutb al-Din al-Shirazi (d.1311), and together with his student Kamal al-Din al-Farisi he tried to explain the colours perceived in the experiment. [7]

Newton's primary colours

On 16 February 1672 (6 February 1671 [old style]), Newton sent a paper to the Royal Society's journal Philosophical Transactions, about the experiments he had been conducting since 1666 with the refraction of light through glass prisms. He concluded that the different refracted rays of light – well parted from others – could not be changed by further refraction, nor by reflection or other means, except through mixture with other rays. He thus found the seven primary colours red, orange, yellow, green, blue, "a violet-purple" and indigo. When mixing the coloured rays from a prism, he found that "the most surprising and wonderful composition was that of whiteness" requiring all the primary colours "mixed in a due proportion". [8]

In reaction to Robert Hooke's criticism of the new theory of light, Newton published a letter in the Philosophical Transactions, with other experiments that proved how sunlight existed of rays with different colours. He described how the cogs or teeth of a gyrating wheel behind a prism can block part of the light so that all the colours would be projected successively if the wheel turns rather slow, but how all the colours will be mixed into white light if the wheel turn very fast. He also pointed out that rays of light that were reflected from multi-coloured bodies were weakened by the loss of many rays and that a mixture of those rays would not produce a pure white, but a grey or "dirty" colour. This could be seen in dust, which on close inspection would reveal that it consists of many coloured particles, or when mixing several colours of paint. He also referred to a child's top which would display a "dirty" colour if it was painted in several colours and made to spin fast by whipping it. [9]

After presenting his conclusions about dividing sunlight into primary colours and mixing them back together into white light, Newton presented a colour circle to illustrate the relations between these colours in his book Opticks (1704). [10]

Many modern sources state that Isaac Newton himself used a spinning disc with coloured sectors to demonstrate how white light was actually the compound of the primary colours. [11] [12] [13] However, these do not reference any historical source.

According to Joseph Plateau, the first to describe how a spinning disc with Newton's seven primary colours would show an (imperfect) white colour was Pieter van Musschenbroek in 1762. [14]

Color disk.png

See also

Related Research Articles

<span class="mw-page-title-main">Ibn al-Haytham</span> Arab physicist, mathematician and astronomer (c. 965 – c. 1040)

Ḥasan Ibn al-Haytham was a medieval mathematician, astronomer, and physicist of the Islamic Golden Age from present-day Iraq. Referred to as "the father of modern optics", he made significant contributions to the principles of optics and visual perception in particular. His most influential work is titled Kitāb al-Manāẓir, written during 1011–1021, which survived in a Latin edition. The works of Alhazen were frequently cited during the scientific revolution by Isaac Newton, Johannes Kepler, Christiaan Huygens, and Galileo Galilei.

<span class="mw-page-title-main">Isaac Newton</span> English mathematician and physicist (1642–1727)

Sir Isaac Newton was an English polymath active as a mathematician, physicist, astronomer, alchemist, theologian, and author who was described in his time as a natural philosopher. He was a key figure in the Scientific Revolution and the Enlightenment that followed. His pioneering book Philosophiæ Naturalis Principia Mathematica, first published in 1687, consolidated many previous results and established classical mechanics. Newton also made seminal contributions to optics, and shares credit with German mathematician Gottfried Wilhelm Leibniz for developing infinitesimal calculus, though he developed calculus years before Leibniz. He is considered one of the greatest and most influential scientists in history.

<span class="mw-page-title-main">Light</span> Electromagnetic radiation humans can see

Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 terahertz, between the infrared and the ultraviolet.

<span class="mw-page-title-main">Optics</span> Branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Light is a type of electromagnetic radiation, and other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">Persistence of vision</span> Optical illusion

Persistence of vision is the optical illusion that occurs when the visual perception of an object does not cease for some time after the rays of light proceeding from it have ceased to enter the eye. The illusion has also been described as "retinal persistence", "persistence of impressions", simply "persistence" and other variations. A very commonly given example of the phenomenon is the apparent fiery trail of a glowing coal or burning stick while it is whirled around in the dark.

<span class="mw-page-title-main">Early life of Isaac Newton</span>

The following article is part of a biography of Sir Isaac Newton, the English mathematician and scientist, author of the Principia. It portrays the years after Newton's birth in 1642, his education, as well as his early scientific contributions, before the writing of his main work, the Principia Mathematica, in 1685.

<span class="mw-page-title-main">Newtonian telescope</span> Type of reflecting telescope

The Newtonian telescope, also called the Newtonian reflector or just a Newtonian, is a type of reflecting telescope invented by the English scientist Sir Isaac Newton, using a concave primary mirror and a flat diagonal secondary mirror. Newton's first reflecting telescope was completed in 1668 and is the earliest known functional reflecting telescope. The Newtonian telescope's simple design has made it very popular with amateur telescope makers.

<i>Opticks</i> Book by Isaac Newton

Opticks: or, A Treatise of the Reflexions, Refractions, Inflexions and Colours of Light is a book by Isaac Newton that was published in English in 1704. The book analyzes the fundamental nature of light by means of the refraction of light with prisms and lenses, the diffraction of light by closely spaced sheets of glass, and the behaviour of color mixtures with spectral lights or pigment powders. Opticks was Newton's second major book on physical science and it is considered one of the three major works on optics during the Scientific Revolution. Newton's name did not appear on the title page of the first edition of Opticks.

<span class="mw-page-title-main">Color wheel</span> Illustrative organization of color hues

A color wheel or color circle is an abstract illustrative organization of color hues around a circle, which shows the relationships between primary colors, secondary colors, tertiary colors etc.

<i>Theory of Colours</i> 1810 book by Johann Wolfgang von Goethe

Theory of Colours is a book by Johann Wolfgang von Goethe about the poet's views on the nature of colours and how they are perceived by humans. It was published in German in 1810 and in English in 1840. The book contains detailed descriptions of phenomena such as coloured shadows, refraction, and chromatic aberration. The book is a successor to two short essays titled "Contributions to Optics".

<span class="mw-page-title-main">Catoptrics</span> Study of the relationship between light and mirrors

Catoptrics deals with the phenomena of reflected light and image-forming optical systems using mirrors. A catoptric system is also called a catopter (catoptre).

<span class="mw-page-title-main">Ibn Sahl (mathematician)</span> Mathematician (c. 940-1000)

Ibn Sahl was a Persian mathematician and physicist of the Islamic Golden Age, associated with the Buyid court of Baghdad. Nothing in his name allows us to glimpse his country of origin.

<span class="mw-page-title-main">Moses Harris</span> English entomologist and engraver

Moses Harris was an English entomologist and engraver.

<span class="mw-page-title-main">History of optics</span>

Optics began with the development of lenses by the ancient Egyptians and Mesopotamians, followed by theories on light and vision developed by ancient Greek philosophers, and the development of geometrical optics in the Greco-Roman world. The word optics is derived from the Greek term τα ὀπτικά meaning 'appearance, look'. Optics was significantly reformed by the developments in the medieval Islamic world, such as the beginnings of physical and physiological optics, and then significantly advanced in early modern Europe, where diffractive optics began. These earlier studies on optics are now known as "classical optics". The term "modern optics" refers to areas of optical research that largely developed in the 20th century, such as wave optics and quantum optics.

<span class="mw-page-title-main">Rainbow</span> Meteorological phenomenon

A rainbow is an optical phenomenon caused by refraction, internal reflection and dispersion of light in water droplets resulting in a continuous spectrum of light appearing in the sky. The rainbow takes the form of a multicoloured circular arc. Rainbows caused by sunlight always appear in the section of sky directly opposite the Sun. Rainbows can be caused by many forms of airborne water. These include not only rain, but also mist, spray, and airborne dew.

<i>Book of Optics</i> 11th century treatise on optics by Ibn al-Haytham

The Book of Optics is a seven-volume treatise on optics and other fields of study composed by the medieval Arab scholar Ibn al-Haytham, known in the West as Alhazen or Alhacen.

Events from the year 1672 in England.

<span class="mw-page-title-main">Newton's reflector</span> First successful mirror telescope

The first reflecting telescope built by Sir Isaac Newton in 1668 is a landmark in the history of telescopes, being the first known successful reflecting telescope. It was the prototype for a design that later came to be called the Newtonian telescope. There were some early prototypes and also modern replicas of this design.

Quaestiones quaedam philosophicae is the name given to a set of notes that Isaac Newton kept for himself during his earlier years in Cambridge. They concern questions in the natural philosophy of the day that interested him. Apart from the light it throws on the formation of his own agenda for research, the major interest in these notes is the documentation of the unaided development of the scientific method in the mind of Newton, whereby every question is put to experimental test.

<span class="mw-page-title-main">Structural coloration</span> Colour in living creatures caused by interference effects

Structural coloration in animals, and a few plants, is the production of colour by microscopically structured surfaces fine enough to interfere with visible light instead of pigments, although some structural coloration occurs in combination with pigments. For example, peacock tail feathers are pigmented brown, but their microscopic structure makes them also reflect blue, turquoise, and green light, and they are often iridescent.

References

  1. Briggs, David (12 August 2012). "Additive mixing, additive-averaging". The Dimensions of Colour. Retrieved 11 August 2018.
  2. Greenslade, Jr., Thomas B. "Newton's Color Wheel". Instruments for Natural Philosophy. Kenyon College . Retrieved 11 August 2018.
  3. Smith, A. Mark (1999). Ptolemy and the Foundations of Ancient Mathematical Optics: A Source Based Guided Study. American Philosophical Society. ISBN   9780871698933.
  4. Smith, A. Mark (1996). "Ptolemy's Theory of Visual Perception: An English Translation of the "Optics" with Introduction and Commentary". Transactions of the American Philosophical Society. 86 (2): iii–300. doi:10.2307/3231951. JSTOR   3231951.
  5. Barker, Andrew (15 September 2015). Porphyry's Commentary on Ptolemy's Harmonics: A Greek Text and Annotated Translation. Cambridge University Press. ISBN   9781107003859.
  6. Alhazen (2001). Smith, A. Mark (ed.). Alhacen's Theory of Visual Perception: A Critical Edition, with English Translation and Commentary, of the First Three Books of Alhacen's De Aspectibus, the Medieval Latin Version of Ibn Al-Haytham's Kitab Al-Manazir. American Philosophical Society. ISBN   9780871699145.
  7. Kirchner, E. (2013). "Color theory and color order in medieval Islam: A review". Color Research & Application. 40 (1): 5-16. doi:10.1002/col.21861.
  8. Newton, Isaac (1671). "A Letter of Mr. Isaac Newton, Professor of the Mathematicks in the University of Cambridge; Containing His New Theory about Light and Colors: Sent by the Author to the Publisher from Cambridge, Febr. 6. 1671/72; In Order to be Communicated to the R. Society". Philosophical Transactions of the Royal Society. 6 (80): 3075–3087. Bibcode:1671RSPT....6.3075N. doi: 10.1098/rstl.1671.0072 . JSTOR   101125.; Under the dual dating system used in the British Empire prior to 1752, the dates between 1 January and 24 March were often mentioned in terms of what the year would be starting 25 March; hence, 1671/72 on the British calendar was 1672.
  9. Royal Society (Great Britain); Britain), Royal Society (Great; Hutton, Charles; Maty, Paul Henry; Pearson, Richard; Shaw, George; Stuart, Alexander; Britain), Royal Society (Great; Britain), Royal Society (Great (1672). Philosophical transactions of the Royal Society of London. Vol. v.7-8=no.81-100 (1672-1673). London: Royal Society of London.
  10. Newton, Isaac (1730). Opticks: Or, A Treatise of the Reflections, Refractions, Inflections and Colours of Light. William Innys at the West-End of St. Paul's. pp. 154–158.
  11. Weinhold, Adolf Ferdinand; Loewy, Benjamin (1875). Introduction to Experimental Physics, Theoretical and Practical: Including Directions for Constructing Physical Apparatus and for Making Experiments. Longmans, Green. p.  541.
  12. Isaac Newton.
  13. Pereira, David (30 June 2011). The Art of HDR Photography. David Pereira. ISBN   9781937367022.
  14. Mémoires de l'Academie royale des sciences, des lettres et des beaux-arts de Belgique (in French). L'Académie. 1878.