Fluxion

Last updated
Newton's introduction of the notions "fluent" and "fluxion" in his 1736 book The method of fluxions and infinite series p.20.gif
Newton's introduction of the notions "fluent" and "fluxion" in his 1736 book

A fluxion is the instantaneous rate of change, or gradient, of a fluent (a time-varying quantity, or function) at a given point. [1] Fluxions were introduced by Isaac Newton to describe his form of a time derivative (a derivative with respect to time). Newton introduced the concept in 1665 and detailed them in his mathematical treatise, Method of Fluxions . [2] Fluxions and fluents made up Newton's early calculus. [3]

Contents

History

Fluxions were central to the Leibniz–Newton calculus controversy, when Newton sent a letter to Gottfried Wilhelm Leibniz explaining them, but concealing his words in code due to his suspicion. He wrote: [4]

I cannot proceed with the explanations of the fluxions now, I have preferred to conceal it thus: 6accdæ13eff7i3l9n4o4qrr4s8t12vx.

The gibberish string was in fact a hash code (by denoting the frequency of each letter) of the Latin phrase Data æqvatione qvotcvnqve flventes qvantitates involvente, flvxiones invenire: et vice versa, meaning: "Given an equation that consists of any number of flowing quantities, to find the fluxions: and vice versa". [5]

Example

If the fluent is defined as (where is time) the fluxion (derivative) at is:

Here is an infinitely small amount of time. [6] So, the term is second order infinite small term and according to Newton, we can now ignore because of its second order infinite smallness comparing to first order infinite smallness of . [7] So, the final equation gets the form:

He justified the use of as a non-zero quantity by stating that fluxions were a consequence of movement by an object.

Criticism

Bishop George Berkeley, a prominent philosopher of the time, denounced Newton's fluxions in his essay The Analyst , published in 1734. [8] Berkeley refused to believe that they were accurate because of the use of the infinitesimal . He did not believe it could be ignored and pointed out that if it was zero, the consequence would be division by zero. Berkeley referred to them as "ghosts of departed quantities", a statement which unnerved mathematicians of the time and led to the eventual disuse of infinitesimals in calculus.

Towards the end of his life Newton revised his interpretation of as infinitely small, preferring to define it as approaching zero, using a similar definition to the concept of limit. [9] He believed this put fluxions back on safe ground. By this time, Leibniz's derivative (and his notation) had largely replaced Newton's fluxions and fluents, and remain in use today.

See also

Related Research Articles

Calculus Branch of mathematics

Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations.

Derivative Instantaneous rate of change (mathematics)

In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value with respect to a change in its argument. Derivatives are a fundamental tool of calculus. For example, the derivative of the position of a moving object with respect to time is the object's velocity: this measures how quickly the position of the object changes when time advances.

A finite difference is a mathematical expression of the form f (x + b) − f (x + a). If a finite difference is divided by ba, one gets a difference quotient. The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems.

Differential calculus Area of mathematics; subarea of calculus

In mathematics, differential calculus is a subfield of calculus that studies the rates at which quantities change. It is one of the two traditional divisions of calculus, the other being integral calculus—the study of the area beneath a curve.

Hyperreal number Element of a nonstandard model of the reals, which can be infinite or infinitesimal

In mathematics, the system of hyperreal numbers is a way of treating infinite and infinitesimal quantities. The hyperreals, or nonstandard reals, *R, are an extension of the real numbers R that contains numbers greater than anything of the form

Infinitesimal Extremely small quantity in calculus; thing so small that there is no way to measure it

In mathematics, an infinitesimal or infinitesimal number is a quantity that is closer to zero than any standard real number, but that is not zero. The word infinitesimal comes from a 17th-century Modern Latin coinage infinitesimus, which originally referred to the "infinity-th" item in a sequence.

Product rule Formula for the derivative of a product

In calculus, the product rule is a formula used to find the derivatives of products of two or more functions. For two functions, it may be stated in Lagrange's notation as

Method of Fluxions Book by Isaac Newton

Method of Fluxions is a book by Isaac Newton. The book was completed in 1671, and published in 1736. Fluxion is Newton's term for a derivative. He originally developed the method at Woolsthorpe Manor during the closing of Cambridge during the Great Plague of London from 1665 to 1667, but did not choose to make his findings known. Gottfried Leibniz developed his form of calculus independently around 1673, 7 years after Newton had developed the basis for differential calculus, as seen in surviving documents like “the method of fluxions and fluents..." from 1666. Leibniz however published his discovery of differential calculus in 1684, nine years before Newton formally published his fluxion notation form of calculus in part during 1693. The calculus notation in use today is mostly that of Leibniz, although Newton's dot notation for differentiation for denoting derivatives with respect to time is still in current use throughout mechanics and circuit analysis.

The Analyst is a book by George Berkeley. It was first published in 1734, first by J. Tonson (London), then by S. Fuller (Dublin). The "infidel mathematician" is believed to have been Edmond Halley, though others have speculated Sir Isaac Newton was intended.

Leibnizs notation Mathematical notation used for calculus

In calculus, Leibniz's notation, named in honor of the 17th-century German philosopher and mathematician Gottfried Wilhelm Leibniz, uses the symbols dx and dy to represent infinitely small increments of x and y, respectively, just as Δx and Δy represent finite increments of x and y, respectively.

In mathematics, nonstandard calculus is the modern application of infinitesimals, in the sense of nonstandard analysis, to infinitesimal calculus. It provides a rigorous justification for some arguments in calculus that were previously considered merely heuristic.

In mathematics, differential refers to several related notions derived from the early days of calculus, put on a rigorous footing, such as infinitesimal differences and the derivatives of functions.

Calculus, known in its early history as infinitesimal calculus, is a mathematical discipline focused on limits, continuity, derivatives, integrals, and infinite series. Isaac Newton and Gottfried Wilhelm Leibniz independently developed the theory of infinitesimal calculus in the later 17th century. By the end of the 17th century, both Leibniz and Newton claimed that the other had stolen his work, and the Leibniz–Newton calculus controversy continued until the death of Leibniz in 1716.

In differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with the context, and it is sometimes advantageous to use more than one notation in a given context. The most common notations for differentiation are listed below.

In nonstandard analysis, the standard part function is a function from the limited (finite) hyperreal numbers to the real numbers. Briefly, the standard part function "rounds off" a finite hyperreal to the nearest real. It associates to every such hyperreal , the unique real infinitely close to it, i.e. is infinitesimal. As such, it is a mathematical implementation of the historical concept of adequality introduced by Pierre de Fermat, as well as Leibniz's Transcendental law of homogeneity.

A timeline of calculus and mathematical analysis.

The fundamental theorem of calculus is a theorem that links the concept of differentiating a function with the concept of integrating a function. The two operations are inverses of each other apart from a constant value which is dependent on where one starts to compute area.

In calculus, the differential represents the principal part of the change in a function y = f(x) with respect to changes in the independent variable. The differential dy is defined by

Fluent (mathematics)

A fluent is a time-varying quantity or variable. The term was used by Isaac Newton in his early calculus to describe his form of a function. The concept was introduced by Newton in 1665 and detailed in his mathematical treatise, Method of Fluxions. Newton described any variable that changed its value as a fluent – for example, the velocity of a ball thrown in the air. The derivative of a fluent is known as a fluxion, the main focus of Newton's calculus. A fluent can be found from its corresponding fluxion through integration.

References

  1. Newton, Sir Isaac (1736). The Method of Fluxions and Infinite Series: With Its Application to the Geometry of Curve-lines. Henry Woodfall; and sold by John Nourse. Retrieved 6 March 2017.
  2. Weisstein, Eric W. "Fluxion". MathWorld .
  3. Fluxion at the Encyclopædia Britannica
  4. Turnbull, Isaac Newton. Ed. by H.W. (2008). The correspondence of Isaac Newton (Digitally printed version, pbk. re-issue. ed.). Cambridge [u.a.]: Univ. Press. ISBN   9780521737821.
  5. Clegg, Brian (2003). A brief history of infinity: the quest to think the unthinkable . London: Constable. ISBN   9781841196503.
  6. Buckmire, Ron. "History of Mathematics" (PDF). Retrieved 28 January 2017.
  7. "Isaac Newton (1642-1727)". www.mhhe.com. Retrieved 6 March 2017.
  8. Berkeley, George (1734). The Analyst: a Discourse addressed to an Infidel Mathematician  . London. p. 25 via Wikisource.
  9. Kitcher, Philip (March 1973). "Fluxions, Limits, and Infinite Littlenesse. A Study of Newton's Presentation of the Calculus". Isis. 64 (1): 33–49. doi:10.1086/351042. S2CID   121774892.