Improper integral

Last updated
An improper Riemann integral of the first kind, where the region in the plane implied by the integral is infinite in extent horizontally. The area of such a region, which the integral represents, may be finite (as here) or inifinite. Improperintegral2.png
An improper Riemann integral of the first kind, where the region in the plane implied by the integral is infinite in extent horizontally. The area of such a region, which the integral represents, may be finite (as here) or inifinite.
An improper Riemann integral of the second kind, where the implied region is infinite vertically. The region may have either finite (as here) or infinite area. Improperintegral1.png
An improper Riemann integral of the second kind, where the implied region is infinite vertically. The region may have either finite (as here) or infinite area.

In mathematical analysis, an improper integral is an extension of the notion of a definite integral to cases that violate the usual assumptions for that kind of integral. [1] In the context of Riemann integrals (or, equivalently, Darboux integrals), this typically involves unboundedness, either of the set over which the integral is taken or of the integrand (the function being integrated), or both. It may also involve bounded but not closed sets or bounded but not continuous functions. While an improper integral is typically written symbolically just like a standard definite integral, it actually represents a limit of a definite integral or a sum of such limits; thus improper integrals are said to converge or diverge. [2] [1] If a regular definite integral (which may retronymically be called a proper integral) is worked out as if it is improper, the same answer will result.

Contents

In the simplest case of a real-valued function of a single variable integrated in the sense of Riemann (or Darboux) over a single interval, improper integrals may be in any of the following forms:

  1. , where is undefined or discontinuous somewhere on

The first three forms are improper because the integrals are taken over an unbounded interval. (They may be improper for other reasons, as well, as explained below.) Such an integral is sometimes described as being of the "first" type or kind if the integrand otherwise satisfies the assumptions of integration. [2] Integrals in the fourth form that are improper because has a vertical asymptote somewhere on the interval may be described as being of the "second" type or kind. [2] Integrals that combine aspects of both types are sometimes described as being of the "third" type or kind. [2]

In each case above, the improper integral must be rewritten using one or more limits, depending on what is causing the integral to be improper. For example, in case 1, if is continuous on the entire interval , then

The limit on the right is taken to be the definition of the integral notation on the left.

If is only continuous on and not at itself, then typically this is rewritten as

for any choice of . Here both limits must converge to a finite value for the improper integral to be said to converge. This requirement avoids the ambiguous case of adding positive and negative infinities (i.e., the "" indeterminate form). Alternatively, an iterated limit could be used or a single limit based on the Cauchy principal value.

If is continuous on and , with a discontinuity of any kind at , then

for any choice of . The previous remarks about indeterminate forms, iterated limits, and the Cauchy principal value also apply here.

The function can have more discontinuities, in which case even more limits would be required (or a more complicated principal value expression).

Cases 2–4 are handled similarly. See the examples below.

Improper integrals can also be evaluated in the context of complex numbers, in higher dimensions, and in other theoretical frameworks such as Lebesgue integration or Henstock–Kurzweil integration. Integrals that are considered improper in one framework may not be in others.

Examples

The original definition of the Riemann integral does not apply to a function such as on the interval [1, ∞), because in this case the domain of integration is unbounded. However, the Riemann integral can often be extended by continuity, by defining the improper integral instead as a limit

The narrow definition of the Riemann integral also does not cover the function on the interval [0, 1]. The problem here is that the integrand is unbounded in the domain of integration. In other words, the definition of the Riemann integral requires that both the domain of integration and the integrand be bounded. However, the improper integral does exist if understood as the limit

The improper integral

[?]
0
[?]
d
x
(
x
+
1
)
x
=
p
{\displaystyle \int _{0}^{\infty }{\frac {dx}{(x+1){\sqrt {x}}}}=\pi }

has unbounded intervals for both domain and range. Improper integral.svg
The improper integral

has unbounded intervals for both domain and range.

Sometimes integrals may have two singularities where they are improper. Consider, for example, the function 1/((x + 1)x) integrated from 0 to (shown right). At the lower bound of the integration domain, as x goes to 0 the function goes to , and the upper bound is itself , though the function goes to 0. Thus this is a doubly improper integral. Integrated, say, from 1 to 3, an ordinary Riemann sum suffices to produce a result of π/6. To integrate from 1 to , a Riemann sum is not possible. However, any finite upper bound, say t (with t > 1), gives a well-defined result, 2 arctan(t) − π/2. This has a finite limit as t goes to infinity, namely π/2. Similarly, the integral from 1/3 to 1 allows a Riemann sum as well, coincidentally again producing π/6. Replacing 1/3 by an arbitrary positive value s (with s < 1) is equally safe, giving π/2 − 2 arctan(s). This, too, has a finite limit as s goes to zero, namely π/2. Combining the limits of the two fragments, the result of this improper integral is

This process does not guarantee success; a limit might fail to exist, or might be infinite. For example, over the bounded interval from 0 to 1 the integral of 1/x does not converge; and over the unbounded interval from 1 to the integral of 1/x does not converge.

The improper integral

[?]
-
1
1
d
x
x
2
3
=
6
{\displaystyle \int _{-1}^{1}{\frac {dx}{\sqrt[{3}]{x^{2}}}}=6}

converges, since both left and right limits exist, though the integrand is unbounded near an interior point. Improper integral unbounded internally.svg
The improper integral

converges, since both left and right limits exist, though the integrand is unbounded near an interior point.

It might also happen that an integrand is unbounded near an interior point, in which case the integral must be split at that point. For the integral as a whole to converge, the limit integrals on both sides must exist and must be bounded. For example:

But the similar integral

cannot be assigned a value in this way, as the integrals above and below zero in the integral domain do not independently converge. (However, see Cauchy principal value.)

Convergence of the integral

An improper integral converges if the limit defining it exists. Thus for example one says that the improper integral

exists and is equal to L if the integrals under the limit exist for all sufficiently large t, and the value of the limit is equal to L.

It is also possible for an improper integral to diverge to infinity. In that case, one may assign the value of ∞ (or −∞) to the integral. For instance

However, other improper integrals may simply diverge in no particular direction, such as

which does not exist, even as an extended real number. This is called divergence by oscillation.

A limitation of the technique of improper integration is that the limit must be taken with respect to one endpoint at a time. Thus, for instance, an improper integral of the form

can be defined by taking two separate limits; to wit

provided the double limit is finite. It can also be defined as a pair of distinct improper integrals of the first kind:

where c is any convenient point at which to start the integration. This definition also applies when one of these integrals is infinite, or both if they have the same sign.

An example of an improper integral where both endpoints are infinite is the Gaussian integral . An example which evaluates to infinity is . But one cannot even define other integrals of this kind unambiguously, such as , since the double limit is infinite and the two-integral method

yields an indeterminate form, . In this case, one can however define an improper integral in the sense of Cauchy principal value:

The questions one must address in determining an improper integral are:

The first question is an issue of mathematical analysis. The second one can be addressed by calculus techniques, but also in some cases by contour integration, Fourier transforms and other more advanced methods.

Types of integrals

There is more than one theory of integration. From the point of view of calculus, the Riemann integral theory is usually assumed as the default theory. In using improper integrals, it can matter which integration theory is in play.

Improper Riemann integrals and Lebesgue integrals

Figure 1 Improperintegral1.png
Figure 1
Figure 2 Improperintegral2.png
Figure 2

In some cases, the integral

can be defined as an integral (a Lebesgue integral, for instance) without reference to the limit

but cannot otherwise be conveniently computed. This often happens when the function f being integrated from a to c has a vertical asymptote at c, or if c = ∞ (see Figures 1 and 2). In such cases, the improper Riemann integral allows one to calculate the Lebesgue integral of the function. Specifically, the following theorem holds ( Apostol 1974 , Theorem 10.33):

are bounded as b  ∞, then the improper Riemann integrals
both exist. Furthermore, f is Lebesgue integrable on [a, ∞), and its Lebesgue integral is equal to its improper Riemann integral.

For example, the integral

can be interpreted alternatively as the improper integral

or it may be interpreted instead as a Lebesgue integral over the set (0, ∞). Since both of these kinds of integral agree, one is free to choose the first method to calculate the value of the integral, even if one ultimately wishes to regard it as a Lebesgue integral. Thus improper integrals are clearly useful tools for obtaining the actual values of integrals.

In other cases, however, a Lebesgue integral between finite endpoints may not even be defined, because the integrals of the positive and negative parts of f are both infinite, but the improper Riemann integral may still exist. Such cases are "properly improper" integrals, i.e. their values cannot be defined except as such limits. For example,

cannot be interpreted as a Lebesgue integral, since

But is nevertheless integrable between any two finite endpoints, and its integral between 0 and ∞ is usually understood as the limit of the integral:

Singularities

One can speak of the singularities of an improper integral, meaning those points of the extended real number line at which limits are used.

Cauchy principal value

Consider the difference in values of two limits:

The former is the Cauchy principal value of the otherwise ill-defined expression

Similarly, we have

but

The former is the principal value of the otherwise ill-defined expression

All of the above limits are cases of the indeterminate form ∞.

These pathologies do not affect "Lebesgue-integrable" functions, that is, functions the integrals of whose absolute values are finite.

Summability

An improper integral may diverge in the sense that the limit defining it may not exist. In this case, there are more sophisticated definitions of the limit which can produce a convergent value for the improper integral. These are called summability methods.

One summability method, popular in Fourier analysis, is that of Cesàro summation. The integral

is Cesàro summable (C, α) if

exists and is finite ( Titchmarsh 1948 , §1.15). The value of this limit, should it exist, is the (C, α) sum of the integral.

An integral is (C, 0) summable precisely when it exists as an improper integral. However, there are integrals which are (C, α) summable for α > 0 which fail to converge as improper integrals (in the sense of Riemann or Lebesgue). One example is the integral

which fails to exist as an improper integral, but is (C,α) summable for every α > 0. This is an integral version of Grandi's series.

Multivariable improper integrals

The improper integral can also be defined for functions of several variables. The definition is slightly different, depending on whether one requires integrating over an unbounded domain, such as , or is integrating a function with singularities, like .

Improper integrals over arbitrary domains

If is a non-negative function that is Riemann integrable over every compact cube of the form , for , then the improper integral of f over is defined to be the limit

provided it exists.

A function on an arbitrary domain A in is extended to a function on by zero outside of A:

The Riemann integral of a function over a bounded domain A is then defined as the integral of the extended function over a cube containing A:

More generally, if A is unbounded, then the improper Riemann integral over an arbitrary domain in is defined as the limit:

Improper integrals with singularities

If f is a non-negative function which is unbounded in a domain A, then the improper integral of f is defined by truncating f at some cutoff M, integrating the resulting function, and then taking the limit as M tends to infinity. That is for , set . Then define

provided this limit exists.

Functions with both positive and negative values

These definitions apply for functions that are non-negative. A more general function f can be decomposed as a difference of its positive part and negative part , so

with and both non-negative functions. The function f has an improper Riemann integral if each of and has one, in which case the value of that improper integral is defined by

In order to exist in this sense, the improper integral necessarily converges absolutely, since

[3] [4]

Notes

  1. 1 2 Buck, R. Creighton (1965). Advanced Calculus (2nd ed.). McGraw-Hill. pp. 133–134.
  2. 1 2 3 4 Spiegel, Murray R. (1963). Schaum's Outline of Theory and Problems of Advanced Calculus. McGraw-Hill. p. 260. ISBN   0-07-060229-8.
  3. Cooper 2005 , p. 538: "We need to make this stronger definition of convergence in terms of |f(x)| because cancellation in the integrals can occur in so many different ways in higher dimensions."
  4. Ghorpade & Limaye 2010 , p. 448: "The relevant notion here is that of unconditional convergence." ... "In fact, for improper integrals of such functions, unconditional convergence turns out to be equivalent to absolute convergence."

Bibliography

Related Research Articles

<span class="mw-page-title-main">Antiderivative</span> Concept in calculus

In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral of a function f is a differentiable function F whose derivative is equal to the original function f. This can be stated symbolically as F' = f. The process of solving for antiderivatives is called antidifferentiation, and its opposite operation is called differentiation, which is the process of finding a derivative. Antiderivatives are often denoted by capital Roman letters such as F and G.

<span class="mw-page-title-main">Gamma function</span> Extension of the factorial function

In mathematics, the gamma function is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except the non-positive integers. For every positive integer n,

<span class="mw-page-title-main">Integral</span> Operation in mathematical calculus

In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, the other being differentiation. Integration started as a method to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Today integration is used in a wide variety of scientific fields.

<span class="mw-page-title-main">Riemann integral</span> Basic integral in elementary calculus

In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Göttingen in 1854, but not published in a journal until 1868. For many functions and practical applications, the Riemann integral can be evaluated by the fundamental theorem of calculus or approximated by numerical integration, or simulated using Monte Carlo Integration.

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical physics, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number Similarly, an improper integral of a function, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if

<span class="mw-page-title-main">Integration by parts</span> Mathematical method in calculus

In calculus, and more generally in mathematical analysis, integration by parts or partial integration is a process that finds the integral of a product of functions in terms of the integral of the product of their derivative and antiderivative. It is frequently used to transform the antiderivative of a product of functions into an antiderivative for which a solution can be more easily found. The rule can be thought of as an integral version of the product rule of differentiation.

<span class="mw-page-title-main">Lists of integrals</span>

Integration is the basic operation in integral calculus. While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful. This page lists some of the most common antiderivatives.

In measure theory, Lebesgue's dominated convergence theorem provides sufficient conditions under which almost everywhere convergence of a sequence of functions implies convergence in the L1 norm. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration.

In mathematics, the Henstock–Kurzweil integral or generalized Riemann integral or gauge integral – also known as the (narrow) Denjoy integral, Luzin integral or Perron integral, but not to be confused with the more general wide Denjoy integral – is one of a number of inequivalent definitions of the integral of a function. It is a generalization of the Riemann integral, and in some situations is more general than the Lebesgue integral. In particular, a function is Lebesgue integrable if and only if the function and its absolute value are Henstock–Kurzweil integrable.

<span class="mw-page-title-main">Integral test for convergence</span> Test for infinite series of monotonous terms for convergence

In mathematics, the integral test for convergence is a method used to test infinite series of monotonous terms for convergence. It was developed by Colin Maclaurin and Augustin-Louis Cauchy and is sometimes known as the Maclaurin–Cauchy test.

<span class="mw-page-title-main">Gaussian integral</span> Integral of the Gaussian function, equal to sqrt(π)

The Gaussian integral, also known as the Euler–Poisson integral, is the integral of the Gaussian function over the entire real line. Named after the German mathematician Carl Friedrich Gauss, the integral is

<span class="mw-page-title-main">Sinc function</span> Special mathematical function defined as sin(x)/x

In mathematics, physics and engineering, the sinc function, denoted by sinc(x), has two forms, normalized and unnormalized.

In mathematics, Laplace's method, named after Pierre-Simon Laplace, is a technique used to approximate integrals of the form

<span class="mw-page-title-main">Contour integration</span> Method of evaluating certain integrals along paths in the complex plane

In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane.

<span class="mw-page-title-main">Dirichlet integral</span> Integral of sin(x)/x from 0 to infinity.

In mathematics, there are several integrals known as the Dirichlet integral, after the German mathematician Peter Gustav Lejeune Dirichlet, one of which is the improper integral of the sinc function over the positive real line:

<span class="mw-page-title-main">Leibniz integral rule</span> Differentiation under the integral sign formula

In calculus, the Leibniz integral rule for differentiation under the integral sign states that for an integral of the form

<span class="mw-page-title-main">Multiple integral</span> Generalization of definite integrals to functions of multiple variables

In mathematics (specifically multivariable calculus), a multiple integral is a definite integral of a function of several real variables, for instance, f(x, y) or f(x, y, z). Integrals of a function of two variables over a region in (the real-number plane) are called double integrals, and integrals of a function of three variables over a region in (real-number 3D space) are called triple integrals. For multiple integrals of a single-variable function, see the Cauchy formula for repeated integration.

<span class="mw-page-title-main">Lebesgue integration</span> Method of integration

In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the X-axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, extends the integral to a larger class of functions. It also extends the domains on which these functions can be defined.