Cauchy principal value

Last updated

In mathematics, the Cauchy principal value, named after Augustin-Louis Cauchy, is a method for assigning values to certain improper integrals which would otherwise be undefined. In this method, a singularity on an integral interval is avoided by limiting the integral interval to the non singular domain.

Contents

Formulation

Depending on the type of singularity in the integrand f, the Cauchy principal value is defined according to the following rules:

For a singularity at a finite number b
with and where b is the difficult point, at which the behavior of the function f is such that for any and for any (See plus or minus for the precise use of notations ± and ∓.)
For a singularity at infinity ()
where and

In some cases it is necessary to deal simultaneously with singularities both at a finite number b and at infinity. This is usually done by a limit of the form In those cases where the integral may be split into two independent, finite limits, and then the function is integrable in the ordinary sense. The result of the procedure for principal value is the same as the ordinary integral; since it no longer matches the definition, it is technically not a "principal value". The Cauchy principal value can also be defined in terms of contour integrals of a complex-valued function with with a pole on a contour C. Define to be that same contour, where the portion inside the disk of radius ε around the pole has been removed. Provided the function is integrable over no matter how small ε becomes, then the Cauchy principal value is the limit: [1] In the case of Lebesgue-integrable functions, that is, functions which are integrable in absolute value, these definitions coincide with the standard definition of the integral. If the function is meromorphic , the Sokhotski–Plemelj theorem relates the principal value of the integral over C with the mean-value of the integrals with the contour displaced slightly above and below, so that the residue theorem can be applied to those integrals. Principal value integrals play a central role in the discussion of Hilbert transforms. [2]

Distribution theory

Let be the set of bump functions, i.e., the space of smooth functions with compact support on the real line . Then the map defined via the Cauchy principal value as is a distribution. The map itself may sometimes be called the principal value (hence the notation p.v.). This distribution appears, for example, in the Fourier transform of the sign function and the Heaviside step function.

Well-definedness as a distribution

To prove the existence of the limit for a Schwartz function , first observe that is continuous on as and hence since is continuous and L'Hopital's rule applies.

Therefore, exists and by applying the mean value theorem to we get:

And furthermore:

we note that the map is bounded by the usual seminorms for Schwartz functions . Therefore, this map defines, as it is obviously linear, a continuous functional on the Schwartz space and therefore a tempered distribution.

Note that the proof needs merely to be continuously differentiable in a neighbourhood of 0 and to be bounded towards infinity. The principal value therefore is defined on even weaker assumptions such as integrable with compact support and differentiable at 0.

More general definitions

The principal value is the inverse distribution of the function and is almost the only distribution with this property: where is a constant and the Dirac distribution.

In a broader sense, the principal value can be defined for a wide class of singular integral kernels on the Euclidean space . If has an isolated singularity at the origin, but is an otherwise "nice" function, then the principal-value distribution is defined on compactly supported smooth functions by Such a limit may not be well defined, or, being well-defined, it may not necessarily define a distribution. It is, however, well-defined if is a continuous homogeneous function of degree whose integral over any sphere centered at the origin vanishes. This is the case, for instance, with the Riesz transforms.

Examples

Consider the values of two limits:

This is the Cauchy principal value of the otherwise ill-defined expression

Also:

Similarly, we have

This is the principal value of the otherwise ill-defined expression but

Notation

Different authors use different notations for the Cauchy principal value of a function , among others: as well as P.V., and V.P.

See also

Related Research Articles

In integral calculus, an elliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied by Giulio Fagnano and Leonhard Euler. Their name originates from their originally arising in connection with the problem of finding the arc length of an ellipse.

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, modelling the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.

<span class="mw-page-title-main">Uniform convergence</span> Mode of convergence of a function sequence

In the mathematical field of analysis, uniform convergence is a mode of convergence of functions stronger than pointwise convergence. A sequence of functions converges uniformly to a limiting function on a set as the function domain if, given any arbitrarily small positive number , a number can be found such that each of the functions differs from by no more than at every pointin. Described in an informal way, if converges to uniformly, then how quickly the functions approach is "uniform" throughout in the following sense: in order to guarantee that differs from by less than a chosen distance , we only need to make sure that is larger than or equal to a certain , which we can find without knowing the value of in advance. In other words, there exists a number that could depend on but is independent of , such that choosing will ensure that for all . In contrast, pointwise convergence of to merely guarantees that for any given in advance, we can find such that, for that particular, falls within of whenever .

In mathematics, an infinite series of numbers is said to converge absolutely if the sum of the absolute values of the summands is finite. More precisely, a real or complex series is said to converge absolutely if for some real number Similarly, an improper integral of a function, is said to converge absolutely if the integral of the absolute value of the integrand is finite—that is, if A convergent series that is not absolutely convergent is called conditionally convergent.

<span class="mw-page-title-main">Cauchy's integral formula</span> Provides integral formulas for all derivatives of a holomorphic function

In mathematics, Cauchy's integral formula, named after Augustin-Louis Cauchy, is a central statement in complex analysis. It expresses the fact that a holomorphic function defined on a disk is completely determined by its values on the boundary of the disk, and it provides integral formulas for all derivatives of a holomorphic function. Cauchy's formula shows that, in complex analysis, "differentiation is equivalent to integration": complex differentiation, like integration, behaves well under uniform limits – a result that does not hold in real analysis.

<span class="mw-page-title-main">Residue theorem</span> Concept of complex analysis

In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula. The residue theorem should not be confused with special cases of the generalized Stokes' theorem; however, the latter can be used as an ingredient of its proof.

<span class="mw-page-title-main">Heaviside step function</span> Indicator function of positive numbers

The Heaviside step function, or the unit step function, usually denoted by H or θ, is a step function named after Oliver Heaviside, the value of which is zero for negative arguments and one for positive arguments. Different conventions concerning the value H(0) are in use. It is an example of the general class of step functions, all of which can be represented as linear combinations of translations of this one.

In the mathematical field of real analysis, the monotone convergence theorem is any of a number of related theorems proving the good convergence behaviour of monotonic sequences, i.e. sequences that are non-increasing, or non-decreasing. In its simplest form, it says that a non-decreasing bounded-above sequence of real numbers converges to its smallest upper bound, its supremum. Likewise, a non-increasing bounded-below sequence converges to its largest lower bound, its infimum. In particular, infinite sums of non-negative numbers converge to the supremum of the partial sums if and only if the partial sums are bounded.

<span class="mw-page-title-main">Wiener process</span> Stochastic process generalizing Brownian motion

In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is often also called Brownian motion due to its historical connection with the physical process of the same name originally observed by Scottish botanist Robert Brown. It is one of the best known Lévy processes and occurs frequently in pure and applied mathematics, economics, quantitative finance, evolutionary biology, and physics.

<span class="mw-page-title-main">Sign function</span> Mathematical function returning -1, 0 or 1

In mathematics, the sign function or signum function is a function that has the value −1, +1 or 0 according to whether the sign of a given real number is positive or negative, or the given number is itself zero. In mathematical notation the sign function is often represented as or .

In mathematics and signal processing, the Hilbert transform is a specific singular integral that takes a function, u(t) of a real variable and produces another function of a real variable H(u)(t). The Hilbert transform is given by the Cauchy principal value of the convolution with the function (see § Definition). The Hilbert transform has a particularly simple representation in the frequency domain: It imparts a phase shift of ±90° (π/2 radians) to every frequency component of a function, the sign of the shift depending on the sign of the frequency (see § Relationship with the Fourier transform). The Hilbert transform is important in signal processing, where it is a component of the analytic representation of a real-valued signal u(t). The Hilbert transform was first introduced by David Hilbert in this setting, to solve a special case of the Riemann–Hilbert problem for analytic functions.

In the mathematical field of complex analysis, contour integration is a method of evaluating certain integrals along paths in the complex plane.

In real analysis, the Darboux integral is constructed using Darboux sums and is one possible definition of the integral of a function. Darboux integrals are equivalent to Riemann integrals, meaning that a function is Darboux-integrable if and only if it is Riemann-integrable, and the values of the two integrals, if they exist, are equal. The definition of the Darboux integral has the advantage of being easier to apply in computations or proofs than that of the Riemann integral. Consequently, introductory textbooks on calculus and real analysis often develop Riemann integration using the Darboux integral, rather than the true Riemann integral. Moreover, the definition is readily extended to defining Riemann–Stieltjes integration. Darboux integrals are named after their inventor, Gaston Darboux (1842–1917).

<span class="mw-page-title-main">Dirichlet integral</span> Integral of sin(x)/x from 0 to infinity.

In mathematics, there are several integrals known as the Dirichlet integral, after the German mathematician Peter Gustav Lejeune Dirichlet, one of which is the improper integral of the sinc function over the positive real line:

In mathematics, the Riemann–Lebesgue lemma, named after Bernhard Riemann and Henri Lebesgue, states that the Fourier transform or Laplace transform of an L1 function vanishes at infinity. It is of importance in harmonic analysis and asymptotic analysis.

In mathematics, the Lebesgue differentiation theorem is a theorem of real analysis, which states that for almost every point, the value of an integrable function is the limiting average taken around the point. The theorem is named for Henri Lebesgue.

The Sokhotski–Plemelj theorem is a theorem in complex analysis, which helps in evaluating certain integrals. The real-line version of it is often used in physics, although rarely referred to by name. The theorem is named after Julian Sochocki, who proved it in 1868, and Josip Plemelj, who rediscovered it as a main ingredient of his solution of the Riemann–Hilbert problem in 1908.

In mathematics, Schilder's theorem is a generalization of the Laplace method from integrals on to functional Wiener integration. The theorem is used in the large deviations theory of stochastic processes. Roughly speaking, out of Schilder's theorem one gets an estimate for the probability that a (scaled-down) sample path of Brownian motion will stray far from the mean path. This statement is made precise using rate functions. Schilder's theorem is generalized by the Freidlin–Wentzell theorem for Itō diffusions.

In mathematics, Hadamard regularization is a method of regularizing divergent integrals by dropping some divergent terms and keeping the finite part, introduced by Hadamard. Riesz showed that this can be interpreted as taking the meromorphic continuation of a convergent integral.

In mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space. The continuity of these operators on L2 is evident because the Fourier transform converts them into multiplication operators. Continuity on Lp spaces was first established by Marcel Riesz. The classical techniques include the use of Poisson integrals, interpolation theory and the Hardy–Littlewood maximal function. For more general operators, fundamental new techniques, introduced by Alberto Calderón and Antoni Zygmund in 1952, were developed by a number of authors to give general criteria for continuity on Lp spaces. This article explains the theory for the classical operators and sketches the subsequent general theory.

References

  1. Kanwal, Ram P. (1996). Linear Integral Equations: Theory and technique (2nd ed.). Boston, MA: Birkhäuser. p. 191. ISBN   0-8176-3940-3 via Google Books.
  2. King, Frederick W. (2009). Hilbert Transforms. Cambridge, UK: Cambridge University Press. ISBN   978-0-521-88762-5.