In mathematics, the Daniell integral is a type of integration that generalizes the concept of more elementary versions such as the Riemann integral to which students are typically first introduced. One of the main difficulties with the traditional formulation of the Lebesgue integral is that it requires the initial development of a workable measure theory before any useful results for the integral can be obtained. However, an alternative approach is available, developed by Percy J.Daniell ( 1918 ) that does not suffer from this deficiency, and has a few significant advantages over the traditional formulation, especially as the integral is generalized into higher-dimensional spaces and further generalizations such as the Stieltjes integral. The basic idea involves the axiomatization of the integral.
We start by choosing a family of bounded real functions (called elementary functions) defined over some set , that satisfies these two axioms:
In addition, every function h in H is assigned a real number , which is called the elementary integral of h, satisfying these three axioms:
That is, we define a continuous non-negative linear functional over the space of elementary functions.
These elementary functions and their elementary integrals may be any set of functions and definitions of integrals over these functions which satisfy these axioms. The family of all step functions evidently satisfies the above axioms for elementary functions. Defining the elementary integral of the family of step functions as the (signed) area underneath a step function evidently satisfies the given axioms for an elementary integral. Applying the construction of the Daniell integral described further below using step functions as elementary functions produces a definition of an integral equivalent to the Lebesgue integral. Using the family of all continuous functions as the elementary functions and the traditional Riemann integral as the elementary integral is also possible, however, this will yield an integral that is also equivalent to Lebesgue's definition. Doing the same, but using the Riemann–Stieltjes integral, along with an appropriate function of bounded variation, gives a definition of integral equivalent to the Lebesgue–Stieltjes integral.
Sets of measure zero may be defined in terms of elementary functions as follows. A set which is a subset of is a set of measure zero if for any , there exists a nondecreasing sequence of nonnegative elementary functions in H such that and on .
A set is called a set of full measure if its complement, relative to , is a set of measure zero. We say that if some property holds at every point of a set of full measure (or equivalently everywhere except on a set of measure zero), it holds almost everywhere.
Although the result is the same, different authors construct the integral differently. A common approach is to start with defining a larger class of functions, based on our chosen elementary functions, the class , which is the family of all functions that are the limit of a nondecreasing sequence of elementary functions, such that the set of integrals is bounded. The integral of a function in is defined as:
It can be shown that this definition of the integral is well-defined, i.e. it does not depend on the choice of sequence .
However, the class is in general not closed under subtraction and scalar multiplication by negative numbers; one needs to further extend it by defining a wider class of functions with these properties.
Daniell's (1918) method, described in the book by Royden, amounts to defining the upper integral of a general function by
The lower integral is defined in a similar fashion or, in short, as . Finally consists of those functions whose upper and lower integrals are finite and coincide, and
An alternative route, based on a discovery by Frederic Riesz, is taken in the book by Shilov and Gurevich and in the article in Encyclopedia of Mathematics. Here consists of those functions that can be represented on a set of full measure (defined in the previous section) as the difference , for some functions and in the class . Then the integral of a function can be defined as:
Again, it may be shown that this integral is well-defined, i.e. it does not depend on the decomposition of into and . This turns out to be equivalent to the original Daniell integral.
Nearly all of the important theorems in the traditional theory of the Lebesgue integral, such as Lebesgue's dominated convergence theorem, the Riesz–Fischer theorem, Fatou's lemma, and Fubini's theorem may also readily be proved using this construction. Its properties are identical to the traditional Lebesgue integral.
Because of the natural correspondence between sets and functions, it is also possible to use the Daniell integral to construct a measure theory. If we take the characteristic function of some set, then its integral may be taken as the measure of the set. This definition of measure based on the Daniell integral can be shown to be equivalent to the traditional Lebesgue measure.
This method of constructing the general integral has a few advantages over the traditional method of Lebesgue, particularly in the field of functional analysis. The Lebesgue and Daniell constructions are equivalent, as pointed out above, if ordinary finite-valued step functions are chosen as elementary functions. However, as one tries to extend the definition of the integral into more complex domains (e.g. attempting to define the integral of a linear functional), one runs into practical difficulties using Lebesgue's construction that are alleviated with the Daniell approach.
The Polish mathematician Jan Mikusinski has made an alternative and more natural formulation of Daniell integration by using the notion of absolutely convergent series. His formulation works for the Bochner integral (the Lebesgue integral for mappings taking values in Banach spaces)[ citation needed ]. Mikusinski's lemma allows one to define the integral without mentioning null sets. He also proved the change of variables theorem for multiple Bochner integrals and Fubini's theorem for Bochner integrals using Daniell integration. The book by Asplund and Bungart carries a lucid treatment of this approach for real valued functions. It also offers a proof of the abstract Radon–Nikodym theorem using the Daniell–Mikusinski approach.
In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets. Some authors require additional restrictions on the measure, as described below.
In probability theory, the expected value is a generalization of the weighted average. Informally, the expected value is the arithmetic mean of the possible values a random variable can take, weighted by the probability of those outcomes. Since it is obtained through arithmetic, the expected value sometimes may not even be included in the sample data set; it is not the value you would "expect" to get in reality.
In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, the other being differentiation. Integration was initially used to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Usage of integration expanded to a wide variety of scientific fields thereafter.
In mathematics, the concept of a measure is a generalization and formalization of geometrical measures and other common notions, such as magnitude, mass, and probability of events. These seemingly distinct concepts have many similarities and can often be treated together in a single mathematical context. Measures are foundational in probability theory, integration theory, and can be generalized to assume negative values, as with electrical charge. Far-reaching generalizations of measure are widely used in quantum physics and physics in general.
In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Göttingen in 1854, but not published in a journal until 1868. For many functions and practical applications, the Riemann integral can be evaluated by the fundamental theorem of calculus or approximated by numerical integration, or simulated using Monte Carlo integration.
In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Since there is no function having this property, modelling the delta "function" rigorously involves the use of limits or, as is common in mathematics, measure theory and the theory of distributions.
In physics, engineering and mathematics, the Fourier transform (FT) is an integral transform that takes a function as input and outputs another function that describes the extent to which various frequencies are present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made, the output of the operation is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into the intensities of its constituent pitches.
In mathematics, the Riemann–Stieltjes integral is a generalization of the Riemann integral, named after Bernhard Riemann and Thomas Joannes Stieltjes. The definition of this integral was first published in 1894 by Stieltjes. It serves as an instructive and useful precursor of the Lebesgue integral, and an invaluable tool in unifying equivalent forms of statistical theorems that apply to discrete and continuous probability.
In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.
In measure theory, Lebesgue's dominated convergence theorem gives a mild sufficient condition under which limits and integrals of a sequence of functions can be interchanged. More technically it says that if a sequence of functions is bounded in absolute value by an integrable function and is almost everywhere point wise convergent to a function then the sequence convergences in to its point wise limit, and in particular the integral of the limit is the limit of the integrals. Its power and utility are two of the primary theoretical advantages of Lebesgue integration over Riemann integration.
In measure-theoretic analysis and related branches of mathematics, Lebesgue–Stieltjes integration generalizes both Riemann–Stieltjes and Lebesgue integration, preserving the many advantages of the former in a more general measure-theoretic framework. The Lebesgue–Stieltjes integral is the ordinary Lebesgue integral with respect to a measure known as the Lebesgue–Stieltjes measure, which may be associated to any function of bounded variation on the real line. The Lebesgue–Stieltjes measure is a regular Borel measure, and conversely every regular Borel measure on the real line is of this kind.
In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assigns a number in [0,∞] to each set in or, more generally, in any metric space.
In mathematics, a locally integrable function is a function which is integrable on every compact subset of its domain of definition. The importance of such functions lies in the fact that their function space is similar to Lp spaces, but its members are not required to satisfy any growth restriction on their behavior at the boundary of their domain : in other words, locally integrable functions can grow arbitrarily fast at the domain boundary, but are still manageable in a way similar to ordinary integrable functions.
The concept of an abstract Wiener space is a mathematical construction developed by Leonard Gross to understand the structure of Gaussian measures on infinite-dimensional spaces. The construction emphasizes the fundamental role played by the Cameron–Martin space. The classical Wiener space is the prototypical example.
In mathematics, uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the theory of martingales.
Maximal functions appear in many forms in harmonic analysis. One of the most important of these is the Hardy–Littlewood maximal function. They play an important role in understanding, for example, the differentiability properties of functions, singular integrals and partial differential equations. They often provide a deeper and more simplified approach to understanding problems in these areas than other methods.
In mathematics, the Pettis integral or Gelfand–Pettis integral, named after Israel M. Gelfand and Billy James Pettis, extends the definition of the Lebesgue integral to vector-valued functions on a measure space, by exploiting duality. The integral was introduced by Gelfand for the case when the measure space is an interval with Lebesgue measure. The integral is also called the weak integral in contrast to the Bochner integral, which is the strong integral.
The uncertainty theory invented by Baoding Liu is a branch of mathematics based on normality, monotonicity, self-duality, countable subadditivity, and product measure axioms.
In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the X axis. The Lebesgue integral, named after French mathematician Henri Lebesgue, is one way to make this concept rigorous and to extend it to more general functions.
This is a glossary of concepts and results in real analysis and complex analysis in mathematics.