In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function (which is a hypersurface in this case), but can be every intersection of the graph itself with a hyperplane (in the case of functions of two variables, a plane) parallel to a fixed x-axis and to the y-axis.
Functions of bounded variation are precisely those with respect to which one may find Riemann–Stieltjes integrals of all continuous functions.
Another characterization states that the functions of bounded variation on a compact interval are exactly those f which can be written as a difference g − h, where both g and h are bounded monotone. In particular, a BV function may have discontinuities, but at most countably many.
In the case of several variables, a function f defined on an open subset Ω of is said to have bounded variation if its distributional derivative is a vector-valued finite Radon measure.
One of the most important aspects of functions of bounded variation is that they form an algebra of discontinuous functions whose first derivative exists almost everywhere: due to this fact, they can and frequently are used to define generalized solutions of nonlinear problems involving functionals, ordinary and partial differential equations in mathematics, physics and engineering.
We have the following chains of inclusions for continuous functions over a closed, bounded interval of the real line:
According to Boris Golubov, BV functions of a single variable were first introduced by Camille Jordan, in the paper ( Jordan 1881 ) dealing with the convergence of Fourier series. The first successful step in the generalization of this concept to functions of several variables was due to Leonida Tonelli, [1] who introduced a class of continuous BV functions in 1926 ( Cesari 1986 , pp. 47–48), to extend his direct method for finding solutions to problems in the calculus of variations in more than one variable. Ten years after, in ( Cesari 1936 ), Lamberto Cesari changed the continuity requirement in Tonelli's definition to a less restrictive integrability requirement, obtaining for the first time the class of functions of bounded variation of several variables in its full generality: as Jordan did before him, he applied the concept to resolve of a problem concerning the convergence of Fourier series, but for functions of two variables. After him, several authors applied BV functions to study Fourier series in several variables, geometric measure theory, calculus of variations, and mathematical physics. Renato Caccioppoli and Ennio De Giorgi used them to define measure of nonsmooth boundaries of sets (see the entry " Caccioppoli set " for further information). Olga Arsenievna Oleinik introduced her view of generalized solutions for nonlinear partial differential equations as functions from the space BV in the paper ( Oleinik 1957 ), and was able to construct a generalized solution of bounded variation of a first order partial differential equation in the paper ( Oleinik 1959 ): few years later, Edward D. Conway and Joel A. Smoller applied BV-functions to the study of a single nonlinear hyperbolic partial differential equation of first order in the paper ( Conway & Smoller 1966 ), proving that the solution of the Cauchy problem for such equations is a function of bounded variation, provided the initial value belongs to the same class. Aizik Isaakovich Vol'pert developed extensively a calculus for BV functions: in the paper ( Vol'pert 1967 ) he proved the chain rule for BV functions and in the book ( Hudjaev & Vol'pert 1985 ) he, jointly with his pupil Sergei Ivanovich Hudjaev, explored extensively the properties of BV functions and their application. His chain rule formula was later extended by Luigi Ambrosio and Gianni Dal Maso in the paper ( Ambrosio & Dal Maso 1990 ).
Definition 1.1. The total variation of a real-valued (or more generally complex-valued) function f, defined on an interval is the quantity
where the supremum is taken over the set of all partitions of the interval considered.
If f is differentiable and its derivative is Riemann-integrable, its total variation is the vertical component of the arc-length of its graph, that is to say,
Definition 1.2. A real-valued function on the real line is said to be of bounded variation (BV function) on a chosen interval if its total variation is finite, i.e.
It can be proved that a real function is of bounded variation in if and only if it can be written as the difference of two non-decreasing functions and on : this result is known as the Jordan decomposition of a function and it is related to the Jordan decomposition of a measure.
Through the Stieltjes integral, any function of bounded variation on a closed interval defines a bounded linear functional on . In this special case, [2] the Riesz–Markov–Kakutani representation theorem states that every bounded linear functional arises uniquely in this way. The normalized positive functionals or probability measures correspond to positive non-decreasing lower semicontinuous functions. This point of view has been important in spectral theory, [3] in particular in its application to ordinary differential equations.
Functions of bounded variation, BV functions, are functions whose distributional derivative is a finite [4] Radon measure. More precisely:
Definition 2.1. Let be an open subset of . A function belonging to is said of bounded variation (BV function), and written
if there exists a finite vector Radon measure such that the following equality holds
that is, defines a linear functional on the space of continuously differentiable vector functions of compact support contained in : the vector measure represents therefore the distributional or weak gradient of .
BV can be defined equivalently in the following way.
Definition 2.2. Given a function belonging to , the total variation of [5] in is defined as
where is the essential supremum norm. Sometimes, especially in the theory of Caccioppoli sets, the following notation is used
in order to emphasize that is the total variation of the distributional / weak gradient of . This notation reminds also that if is of class (i.e. a continuous and differentiable function having continuous derivatives) then its variation is exactly the integral of the absolute value of its gradient.
The space of functions of bounded variation (BV functions) can then be defined as
The two definitions are equivalent since if then
therefore defines a continuous linear functional on the space . Since as a linear subspace, this continuous linear functional can be extended continuously and linearly to the whole by the Hahn–Banach theorem. Hence the continuous linear functional defines a Radon measure by the Riesz–Markov–Kakutani representation theorem.
If the function space of locally integrable functions, i.e. functions belonging to , is considered in the preceding definitions 1.2 , 2.1 and 2.2 instead of the one of globally integrable functions, then the function space defined is that of functions of locally bounded variation. Precisely, developing this idea for definition 2.2 , a local variation is defined as follows,
for every set , having defined as the set of all precompact open subsets of with respect to the standard topology of finite-dimensional vector spaces, and correspondingly the class of functions of locally bounded variation is defined as
There are basically two distinct conventions for the notation of spaces of functions of locally or globally bounded variation, and unfortunately they are quite similar: the first one, which is the one adopted in this entry, is used for example in references Giusti (1984) (partially), Hudjaev & Vol'pert (1985) (partially), Giaquinta, Modica & Souček (1998) and is the following one
The second one, which is adopted in references Vol'pert (1967) and Maz'ya (1985) (partially), is the following:
Only the properties common to functions of one variable and to functions of several variables will be considered in the following, and proofs will be carried on only for functions of several variables since the proof for the case of one variable is a straightforward adaptation of the several variables case: also, in each section it will be stated if the property is shared also by functions of locally bounded variation or not. References ( Giusti 1984 , pp. 7–9), ( Hudjaev & Vol'pert 1985 ) and ( Màlek et al. 1996 ) are extensively used.
In the case of one variable, the assertion is clear: for each point in the interval of definition of the function , either one of the following two assertions is true
while both limits exist and are finite. In the case of functions of several variables, there are some premises to understand: first of all, there is a continuum of directions along which it is possible to approach a given point belonging to the domain ⊂. It is necessary to make precise a suitable concept of limit: choosing a unit vector it is possible to divide in two sets
Then for each point belonging to the domain of the BV function , only one of the following two assertions is true
or belongs to a subset of having zero -dimensional Hausdorff measure. The quantities
are called approximate limits of the BV function at the point .
The functional is lower semi-continuous: to see this, choose a Cauchy sequence of BV-functions converging to . Then, since all the functions of the sequence and their limit function are integrable and by the definition of lower limit
Now considering the supremum on the set of functions such that then the following inequality holds true
which is exactly the definition of lower semicontinuity.
By definition is a subset of , while linearity follows from the linearity properties of the defining integral i.e.
for all therefore for all , and
for all , therefore for all , and all . The proved vector space properties imply that is a vector subspace of . Consider now the function defined as
where is the usual norm : it is easy to prove that this is a norm on . To see that is complete respect to it, i.e. it is a Banach space, consider a Cauchy sequence in . By definition it is also a Cauchy sequence in and therefore has a limit in : since is bounded in for each , then by lower semicontinuity of the variation , therefore is a BV function. Finally, again by lower semicontinuity, choosing an arbitrary small positive number
From this we deduce that is continuous because it's a norm.
To see this, it is sufficient to consider the following example belonging to the space : [6] for each 0 < α < 1 define
as the characteristic function of the left-closed interval . Then, choosing such that the following relation holds true:
Now, in order to prove that every dense subset of cannot be countable, it is sufficient to see that for every it is possible to construct the balls
Obviously those balls are pairwise disjoint, and also are an indexed family of sets whose index set is . This implies that this family has the cardinality of the continuum: now, since every dense subset of must have at least a point inside each member of this family, its cardinality is at least that of the continuum and therefore cannot a be countable subset. [7] This example can be obviously extended to higher dimensions, and since it involves only local properties, it implies that the same property is true also for .
Chain rules for nonsmooth functions are very important in mathematics and mathematical physics since there are several important physical models whose behaviors are described by functions or functionals with a very limited degree of smoothness. The following chain rule is proved in the paper ( Vol'pert 1967 , p. 248). Note all partial derivatives must be interpreted in a generalized sense, i.e., as generalized derivatives.
Theorem. Let be a function of class (i.e. a continuous and differentiable function having continuous derivatives) and let be a function in with being an open subset of . Then and
where is the mean value of the function at the point , defined as
A more general chain rule formula for Lipschitz continuous functions has been found by Luigi Ambrosio and Gianni Dal Maso and is published in the paper ( Ambrosio & Dal Maso 1990 ). However, even this formula has very important direct consequences: we use in place of , where is also a function. We have to assume also that is locally integrable with respect to the measure for each , and that is locally integrable with respect to the measure for each . Then choosing , the preceding formula gives the Leibniz rule for 'BV' functions
It is possible to generalize the above notion of total variation so that different variations are weighted differently. More precisely, let be any increasing function such that (the weight function ) and let be a function from the interval taking values in a normed vector space . Then the -variation of over is defined as
where, as usual, the supremum is taken over all finite partitions of the interval , i.e. all the finite sets of real numbers such that
The original notion of variation considered above is the special case of -variation for which the weight function is the identity function: therefore an integrable function is said to be a weighted BV function (of weight ) if and only if its -variation is finite.
The space is a topological vector space with respect to the norm
where denotes the usual supremum norm of . Weighted BV functions were introduced and studied in full generality by Władysław Orlicz and Julian Musielak in the paper Musielak & Orlicz 1959: Laurence Chisholm Young studied earlier the case where is a positive integer.
SBV functionsi.e.Special functions of Bounded Variation were introduced by Luigi Ambrosio and Ennio De Giorgi in the paper ( Ambrosio & De Giorgi 1988 ), dealing with free discontinuity variational problems: given an open subset of , the space is a proper linear subspace of , since the weak gradient of each function belonging to it consists precisely of the sum of an -dimensional support and an -dimensional support measure and no intermediate-dimensional terms, as seen in the following definition.
Definition. Given a locally integrable function , then if and only if
1. There exist two Borel functions and of domain and codomain such that
2. For all of continuously differentiable vector functions of compact support contained in , i.e. for all the following formula is true:
where is the -dimensional Hausdorff measure.
Details on the properties of SBV functions can be found in works cited in the bibliography section: particularly the paper ( De Giorgi 1992 ) contains a useful bibliography.
As particular examples of Banach spaces, Dunford & Schwartz (1958 , Chapter IV) consider spaces of sequences of bounded variation, in addition to the spaces of functions of bounded variation. The total variation of a sequence x = (xi) of real or complex numbers is defined by
The space of all sequences of finite total variation is denoted by BV. The norm on BV is given by
With this norm, the space BV is a Banach space which is isomorphic to .
The total variation itself defines a norm on a certain subspace of BV, denoted by BV0, consisting of sequences x = (xi) for which
The norm on BV0 is denoted
With respect to this norm BV0 becomes a Banach space as well, which is isomorphic and isometric to (although not in the natural way).
A signed (or complex) measure on a measurable space is said to be of bounded variation if its total variation is bounded: see Halmos (1950 , p. 123), Kolmogorov & Fomin (1969 , p. 346) or the entry "Total variation" for further details.
As mentioned in the introduction, two large class of examples of BV functions are monotone functions, and absolutely continuous functions. For a negative example: the function
is not of bounded variation on the interval
While it is harder to see, the continuous function
is not of bounded variation on the interval either.
At the same time, the function
is of bounded variation on the interval . However, all three functions are of bounded variation on each intervalwith.
Every monotone, bounded function is of bounded variation. For such a function on the interval and any partition of this interval, it can be seen that
from the fact that the sum on the left is telescoping. From this, it follows that for such ,
In particular, the monotone Cantor function is a well-known example of a function of bounded variation that is not absolutely continuous. [8]
The Sobolev space is a proper subset of . In fact, for each in it is possible to choose a measure (where is the Lebesgue measure on ) such that the equality
holds, since it is nothing more than the definition of weak derivative, and hence holds true. One can easily find an example of a BV function which is not : in dimension one, any step function with a non-trivial jump will do.
Functions of bounded variation have been studied in connection with the set of discontinuities of functions and differentiability of real functions, and the following results are well-known. If is a real function of bounded variation on an interval then
For real functions of several real variables
The ability of BV functions to deal with discontinuities has made their use widespread in the applied sciences: solutions of problems in mechanics, physics, chemical kinetics are very often representable by functions of bounded variation. The book ( Hudjaev & Vol'pert 1985 ) details a very ample set of mathematical physics applications of BV functions. Also there is some modern application which deserves a brief description.
In mathematical analysis, the Dirac delta function, also known as the unit impulse, is a generalized function on the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one. Thus it can be represented heuristically as
In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a theorem relating the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed.
In mathematics, a self-adjoint operator on a complex vector space V with inner product is a linear map A that is its own adjoint. If V is finite-dimensional with a given orthonormal basis, this is equivalent to the condition that the matrix of A is a Hermitian matrix, i.e., equal to its conjugate transpose A∗. By the finite-dimensional spectral theorem, V has an orthonormal basis such that the matrix of A relative to this basis is a diagonal matrix with entries in the real numbers. This article deals with applying generalizations of this concept to operators on Hilbert spaces of arbitrary dimension.
In mathematics, the support of a real-valued function is the subset of the function domain containing the elements which are not mapped to zero. If the domain of is a topological space, then the support of is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used widely in mathematical analysis.
In mathematics and signal processing, the Hilbert transform is a specific singular integral that takes a function, u(t) of a real variable and produces another function of a real variable H(u)(t). The Hilbert transform is given by the Cauchy principal value of the convolution with the function (see § Definition). The Hilbert transform has a particularly simple representation in the frequency domain: It imparts a phase shift of ±90° (π/2 radians) to every frequency component of a function, the sign of the shift depending on the sign of the frequency (see § Relationship with the Fourier transform). The Hilbert transform is important in signal processing, where it is a component of the analytic representation of a real-valued signal u(t). The Hilbert transform was first introduced by David Hilbert in this setting, to solve a special case of the Riemann–Hilbert problem for analytic functions.
In mathematics, a Sobolev space is a vector space of functions equipped with a norm that is a combination of Lp-norms of the function together with its derivatives up to a given order. The derivatives are understood in a suitable weak sense to make the space complete, i.e. a Banach space. Intuitively, a Sobolev space is a space of functions possessing sufficiently many derivatives for some application domain, such as partial differential equations, and equipped with a norm that measures both the size and regularity of a function.
In mathematics, the total variation identifies several slightly different concepts, related to the (local or global) structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation x ↦ f(x), for x ∈ [a, b]. Functions whose total variation is finite are called functions of bounded variation.
In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, Shinzo Watanabe, I. Shigekawa, and so on finally completed the foundations.
In mathematics, a flow formalizes the idea of the motion of particles in a fluid. Flows are ubiquitous in science, including engineering and physics. The notion of flow is basic to the study of ordinary differential equations. Informally, a flow may be viewed as a continuous motion of points over time. More formally, a flow is a group action of the real numbers on a set.
In mathematics, a locally integrable function is a function which is integrable on every compact subset of its domain of definition. The importance of such functions lies in the fact that their function space is similar to Lp spaces, but its members are not required to satisfy any growth restriction on their behavior at the boundary of their domain : in other words, locally integrable functions can grow arbitrarily fast at the domain boundary, but are still manageable in a way similar to ordinary integrable functions.
The Navier–Stokes existence and smoothness problem concerns the mathematical properties of solutions to the Navier–Stokes equations, a system of partial differential equations that describe the motion of a fluid in space. Solutions to the Navier–Stokes equations are used in many practical applications. However, theoretical understanding of the solutions to these equations is incomplete. In particular, solutions of the Navier–Stokes equations often include turbulence, which remains one of the greatest unsolved problems in physics, despite its immense importance in science and engineering.
In mathematics, more specifically measure theory, there are various notions of the convergence of measures. For an intuitive general sense of what is meant by convergence of measures, consider a sequence of measures μn on a space, sharing a common collection of measurable sets. Such a sequence might represent an attempt to construct 'better and better' approximations to a desired measure μ that is difficult to obtain directly. The meaning of 'better and better' is subject to all the usual caveats for taking limits; for any error tolerance ε > 0 we require there be N sufficiently large for n ≥ N to ensure the 'difference' between μn and μ is smaller than ε. Various notions of convergence specify precisely what the word 'difference' should mean in that description; these notions are not equivalent to one another, and vary in strength.
In mathematics, Weyl's lemma, named after Hermann Weyl, states that every weak solution of Laplace's equation is a smooth solution. This contrasts with the wave equation, for example, which has weak solutions that are not smooth solutions. Weyl's lemma is a special case of elliptic or hypoelliptic regularity.
In mathematics, a Caccioppoli set is a subset of $\R^n$ whose boundary is measurable and has a finite measure. A synonym is set of (locally) finite perimeter. Basically, a set is a Caccioppoli set if its characteristic function is a function of bounded variation, and its perimeter is the total variation of the characteristic function.
In mathematics, the trace operator extends the notion of the restriction of a function to the boundary of its domain to "generalized" functions in a Sobolev space. This is particularly important for the study of partial differential equations with prescribed boundary conditions, where weak solutions may not be regular enough to satisfy the boundary conditions in the classical sense of functions.
In mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of a solution, direct methods may be used to compute the solution to desired accuracy.
In numerical mathematics, the gradient discretisation method (GDM) is a framework which contains classical and recent numerical schemes for diffusion problems of various kinds: linear or non-linear, steady-state or time-dependent. The schemes may be conforming or non-conforming, and may rely on very general polygonal or polyhedral meshes.
In geometry, a valuation is a finitely additive function from a collection of subsets of a set to an abelian semigroup. For example, Lebesgue measure is a valuation on finite unions of convex bodies of Other examples of valuations on finite unions of convex bodies of are surface area, mean width, and Euler characteristic.
In functional analysis, every C*-algebra is isomorphic to a subalgebra of the C*-algebra of bounded linear operators on some Hilbert space This article describes the spectral theory of closed normal subalgebras of . A subalgebra of is called normal if it is commutative and closed under the operation: for all , we have and that .
In the mathematical discipline of functional analysis, a differentiable vector-valued function from Euclidean space is a differentiable function valued in a topological vector space (TVS) whose domains is a subset of some finite-dimensional Euclidean space. It is possible to generalize the notion of derivative to functions whose domain and codomain are subsets of arbitrary topological vector spaces (TVSs) in multiple ways. But when the domain of a TVS-valued function is a subset of a finite-dimensional Euclidean space then many of these notions become logically equivalent resulting in a much more limited number of generalizations of the derivative and additionally, differentiability is also more well-behaved compared to the general case. This article presents the theory of -times continuously differentiable functions on an open subset of Euclidean space , which is an important special case of differentiation between arbitrary TVSs. This importance stems partially from the fact that every finite-dimensional vector subspace of a Hausdorff topological vector space is TVS isomorphic to Euclidean space so that, for example, this special case can be applied to any function whose domain is an arbitrary Hausdorff TVS by restricting it to finite-dimensional vector subspaces.
This article incorporates material from BV function on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.