Weight function

Last updated

A weight function is a mathematical device used when performing a sum, integral, or average to give some elements more "weight" or influence on the result than other elements in the same set. The result of this application of a weight function is a weighted sum or weighted average. Weight functions occur frequently in statistics and analysis, and are closely related to the concept of a measure. Weight functions can be employed in both discrete and continuous settings. They can be used to construct systems of calculus called "weighted calculus" [1] and "meta-calculus". [2]

Contents

Discrete weights

General definition

In the discrete setting, a weight function is a positive function defined on a discrete set , which is typically finite or countable. The weight function corresponds to the unweighted situation in which all elements have equal weight. One can then apply this weight to various concepts.

If the function is a real-valued function, then the unweighted sum of on is defined as

but given a weight function, the weighted sum or conical combination is defined as

One common application of weighted sums arises in numerical integration.

If B is a finite subset of A, one can replace the unweighted cardinality |B| of B by the weighted cardinality

If A is a finite non-empty set, one can replace the unweighted mean or average

by the weighted mean or weighted average

In this case only the relative weights are relevant.

Statistics

Weighted means are commonly used in statistics to compensate for the presence of bias. For a quantity measured multiple independent times with variance , the best estimate of the signal is obtained by averaging all the measurements with weight , and the resulting variance is smaller than each of the independent measurements . The maximum likelihood method weights the difference between fit and data using the same weights .

The expected value of a random variable is the weighted average of the possible values it might take on, with the weights being the respective probabilities. More generally, the expected value of a function of a random variable is the probability-weighted average of the values the function takes on for each possible value of the random variable.

In regressions in which the dependent variable is assumed to be affected by both current and lagged (past) values of the independent variable, a distributed lag function is estimated, this function being a weighted average of the current and various lagged independent variable values. Similarly, a moving average model specifies an evolving variable as a weighted average of current and various lagged values of a random variable.

Mechanics

The terminology weight function arises from mechanics: if one has a collection of objects on a lever, with weights (where weight is now interpreted in the physical sense) and locations , then the lever will be in balance if the fulcrum of the lever is at the center of mass

which is also the weighted average of the positions .

Continuous weights

In the continuous setting, a weight is a positive measure such as on some domain , which is typically a subset of a Euclidean space , for instance could be an interval . Here is Lebesgue measure and is a non-negative measurable function. In this context, the weight function is sometimes referred to as a density.

General definition

If is a real-valued function, then the unweighted integral

can be generalized to the weighted integral

Note that one may need to require to be absolutely integrable with respect to the weight in order for this integral to be finite.

Weighted volume

If E is a subset of , then the volume vol(E) of E can be generalized to the weighted volume

Weighted average

If has finite non-zero weighted volume, then we can replace the unweighted average

by the weighted average

Bilinear form

If and are two functions, one can generalize the unweighted bilinear form

to a weighted bilinear form

See the entry on orthogonal polynomials for examples of weighted orthogonal functions.

See also

Related Research Articles

<span class="mw-page-title-main">Expected value</span> Average value of a random variable

In probability theory, the expected value is a generalization of the weighted average. Informally, the expected value is the mean of the possible values a random variable can take, weighted by the probability of those outcomes. Since it is obtained through arithmetic, the expected value sometimes may not even be included in the sample data set; it is not the value you would "expect" to get in reality.

<span class="mw-page-title-main">Integral</span> Operation in mathematical calculus

In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, the other being differentiation. Integration was initially used to solve problems in mathematics and physics, such as finding the area under a curve, or determining displacement from velocity. Usage of integration expanded to a wide variety of scientific fields thereafter.

<span class="mw-page-title-main">Probability distribution</span> Mathematical function for the probability a given outcome occurs in an experiment

In probability theory and statistics, a probability distribution is the mathematical function that gives the probabilities of occurrence of possible outcomes for an experiment. It is a mathematical description of a random phenomenon in terms of its sample space and the probabilities of events.

In vector calculus and differential geometry the generalized Stokes theorem, also called the Stokes–Cartan theorem, is a statement about the integration of differential forms on manifolds, which both simplifies and generalizes several theorems from vector calculus. In particular, the fundamental theorem of calculus is the special case where the manifold is a line segment, Green’s theorem and Stokes' theorem are the cases of a surface in or and the divergence theorem is the case of a volume in Hence, the theorem is sometimes referred to as the fundamental theorem of multivariate calculus.

<span class="mw-page-title-main">Harmonic function</span> Functions in mathematics

In mathematics, mathematical physics and the theory of stochastic processes, a harmonic function is a twice continuously differentiable function where U is an open subset of that satisfies Laplace's equation, that is, everywhere on U. This is usually written as or

In vector calculus, the divergence theorem, also known as Gauss's theorem or Ostrogradsky's theorem, is a theorem relating the flux of a vector field through a closed surface to the divergence of the field in the volume enclosed.

In mathematics, differential forms provide a unified approach to define integrands over curves, surfaces, solids, and higher-dimensional manifolds. The modern notion of differential forms was pioneered by Élie Cartan. It has many applications, especially in geometry, topology and physics.

<span class="mw-page-title-main">Jensen's inequality</span> Theorem of convex functions

In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function. It was proved by Jensen in 1906, building on an earlier proof of the same inequality for doubly-differentiable functions by Otto Hölder in 1889. Given its generality, the inequality appears in many forms depending on the context, some of which are presented below. In its simplest form the inequality states that the convex transformation of a mean is less than or equal to the mean applied after convex transformation.

In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.

Multi-index notation is a mathematical notation that simplifies formulas used in multivariable calculus, partial differential equations and the theory of distributions, by generalising the concept of an integer index to an ordered tuple of indices.

In mathematics, the total variation identifies several slightly different concepts, related to the (local or global) structure of the codomain of a function or a measure. For a real-valued continuous function f, defined on an interval [a, b] ⊂ R, its total variation on the interval of definition is a measure of the one-dimensional arclength of the curve with parametric equation xf(x), for x ∈ [a, b]. Functions whose total variation is finite are called functions of bounded variation.

In abstract algebra and multilinear algebra, a multilinear form on a vector space over a field is a map

In mathematics, the stationary phase approximation is a basic principle of asymptotic analysis, applying to functions given by integration against a rapidly-varying complex exponential.

In mathematics, a change of variables is a basic technique used to simplify problems in which the original variables are replaced with functions of other variables. The intent is that when expressed in new variables, the problem may become simpler, or equivalent to a better understood problem.

In calculus, the Leibniz integral rule for differentiation under the integral sign, named after Gottfried Wilhelm Leibniz, states that for an integral of the form where and the integrands are functions dependent on the derivative of this integral is expressible as where the partial derivative indicates that inside the integral, only the variation of with is considered in taking the derivative.

In mathematics, the Poincaré inequality is a result in the theory of Sobolev spaces, named after the French mathematician Henri Poincaré. The inequality allows one to obtain bounds on a function using bounds on its derivatives and the geometry of its domain of definition. Such bounds are of great importance in the modern, direct methods of the calculus of variations. A very closely related result is Friedrichs' inequality.

In the mathematical field of geometric measure theory, the coarea formula expresses the integral of a function over an open set in Euclidean space in terms of integrals over the level sets of another function. A special case is Fubini's theorem, which says under suitable hypotheses that the integral of a function over the region enclosed by a rectangular box can be written as the iterated integral over the level sets of the coordinate functions. Another special case is integration in spherical coordinates, in which the integral of a function on Rn is related to the integral of the function over spherical shells: level sets of the radial function. The formula plays a decisive role in the modern study of isoperimetric problems.

In mathematics, the Skorokhod integral, also named Hitsuda–Skorokhod integral, often denoted , is an operator of great importance in the theory of stochastic processes. It is named after the Ukrainian mathematician Anatoliy Skorokhod and Japanese mathematician Masuyuki Hitsuda. Part of its importance is that it unifies several concepts:

In mathematical analysis and its applications, a function of several real variables or real multivariate function is a function with more than one argument, with all arguments being real variables. This concept extends the idea of a function of a real variable to several variables. The "input" variables take real values, while the "output", also called the "value of the function", may be real or complex. However, the study of the complex-valued functions may be easily reduced to the study of the real-valued functions, by considering the real and imaginary parts of the complex function; therefore, unless explicitly specified, only real-valued functions will be considered in this article.

In mathematics, calculus on Euclidean space is a generalization of calculus of functions in one or several variables to calculus of functions on Euclidean space as well as a finite-dimensional real vector space. This calculus is also known as advanced calculus, especially in the United States. It is similar to multivariable calculus but is somewhat more sophisticated in that it uses linear algebra more extensively and covers some concepts from differential geometry such as differential forms and Stokes' formula in terms of differential forms. This extensive use of linear algebra also allows a natural generalization of multivariable calculus to calculus on Banach spaces or topological vector spaces.

References

  1. Jane Grossman, Michael Grossman, Robert Katz. The First Systems of Weighted Differential and Integral Calculus, ISBN   0-9771170-1-4, 1980.
  2. Jane Grossman.Meta-Calculus: Differential and Integral, ISBN   0-9771170-2-2, 1981.