Caccioppoli set

Last updated

In mathematics, a Caccioppoli set is a subset of whose boundary is (in a suitable sense) measurable and has (at least locally) a finite measure . A synonym is set of (locally) finite perimeter. Basically, a set is a Caccioppoli set if its characteristic function is a function of bounded variation, and its perimeter is the total variation of the characteristic function.

Contents

History

The basic concept of a Caccioppoli set was first introduced by the Italian mathematician Renato Caccioppoli in the paper ( Caccioppoli 1927 ): considering a plane set or a surface defined on an open set in the plane, he defined their measure or area as the total variation in the sense of Tonelli of their defining functions, i.e. of their parametric equations, provided this quantity was bounded . The measure of the boundary of a set was defined as a functional , precisely a set function, for the first time: also, being defined on open sets, it can be defined on all Borel sets and its value can be approximated by the values it takes on an increasing net of subsets. Another clearly stated (and demonstrated) property of this functional was its lower semi-continuity .

In the paper ( Caccioppoli 1928 ), he precised by using a triangular mesh as an increasing net approximating the open domain, defining positive and negative variations whose sum is the total variation, i.e. the area functional. His inspiring point of view, as he explicitly admitted, was those of Giuseppe Peano, as expressed by the Peano-Jordan Measure: to associate to every portion of a surface an oriented plane area in a similar way as an approximating chord is associated to a curve. Also, another theme found in this theory was the extension of a functional from a subspace to the whole ambient space: the use of theorems generalizing the Hahn–Banach theorem is frequently encountered in Caccioppoli research. However, the restricted meaning of total variation in the sense of Tonelli added much complication to the formal development of the theory, and the use of a parametric description of the sets restricted its scope.

Lamberto Cesari introduced the "right" generalization of functions of bounded variation to the case of several variables only in 1936: [1] perhaps, this was one of the reasons that induced Caccioppoli to present an improved version of his theory only nearly 24 years later, in the talk ( Caccioppoli 1953 ) at the IV UMI Congress in October 1951, followed by five notes published in the Rendiconti of the Accademia Nazionale dei Lincei. These notes were sharply criticized by Laurence Chisholm Young in the Mathematical Reviews. [2]

In 1952 Ennio De Giorgi presented his first results, developing the ideas of Caccioppoli, on the definition of the measure of boundaries of sets at the Salzburg Congress of the Austrian Mathematical Society: he obtained this results by using a smoothing operator, analogous to a mollifier, constructed from the Gaussian function, independently proving some results of Caccioppoli. Probably he was led to study this theory by his teacher and friend Mauro Picone, who had also been the teacher of Caccioppoli and was likewise his friend. De Giorgi met Caccioppoli in 1953 for the first time: during their meeting, Caccioppoli expressed a profound appreciation of his work, starting their lifelong friendship. [3] The same year he published his first paper on the topic i.e. ( De Giorgi 1953 ): however, this paper and the closely following one did not attracted much interest from the mathematical community. It was only with the paper ( De Giorgi 1954 ), reviewed again by Laurence Chisholm Young in the Mathematical Reviews, [4] that his approach to sets of finite perimeter became widely known and appreciated: also, in the review, Young revised his previous criticism on the work of Caccioppoli.

The last paper of De Giorgi on the theory of perimeters was published in 1958: in 1959, after the death of Caccioppoli, he started to call sets of finite perimeter "Caccioppoli sets". Two years later Herbert Federer and Wendell Fleming published their paper ( Federer & Fleming 1960 ), changing the approach to the theory. Basically they introduced two new kind of currents, respectively normal currents and integral currents: in a subsequent series of papers and in his famous treatise, [5] Federer showed that Caccioppoli sets are normal currents of dimension in -dimensional euclidean spaces. However, even if the theory of Caccioppoli sets can be studied within the framework of theory of currents, it is customary to study it through the "traditional" approach using functions of bounded variation, as the various sections found in a lot of important monographs in mathematics and mathematical physics testify. [6]

Formal definition

In what follows, the definition and properties of functions of bounded variation in the -dimensional setting will be used.

Caccioppoli definition

Definition 1. Let be an open subset of and let be a Borel set. The perimeter of in is defined as follows

where is the characteristic function of . That is, the perimeter of in an open set is defined to be the total variation of its characteristic function on that open set. If , then we write for the (global) perimeter.

Definition 2. The Borel set is a Caccioppoli set if and only if it has finite perimeter in every bounded open subset of , i.e.

whenever is open and bounded.

Therefore, a Caccioppoli set has a characteristic function whose total variation is locally bounded. From the theory of functions of bounded variation it is known that this implies the existence of a vector-valued Radon measure such that

As noted for the case of general functions of bounded variation, this vector measure is the distributional or weak gradient of . The total variation measure associated with is denoted by , i.e. for every open set we write for .

De Giorgi definition

In his papers ( De Giorgi 1953 ) and ( De Giorgi 1954 ), Ennio De Giorgi introduces the following smoothing operator, analogous to the Weierstrass transform in the one-dimensional case

As one can easily prove, is a smooth function for all , such that

also, its gradient is everywhere well defined, and so is its absolute value

Having defined this function, De Giorgi gives the following definition of perimeter:

Definition 3. Let be an open subset of and let be a Borel set. The perimeter of in is the value

Actually De Giorgi considered the case : however, the extension to the general case is not difficult. It can be proved that the two definitions are exactly equivalent: for a proof see the already cited De Giorgi's papers or the book ( Giusti 1984 ). Now having defined what a perimeter is, De Giorgi gives the same definition 2 of what a set of (locally) finite perimeter is.

Basic properties

The following properties are the ordinary properties which the general notion of a perimeter is supposed to have:

Notions of boundary

For any given Caccioppoli set there exist two naturally associated analytic quantities: the vector-valued Radon measure and its total variation measure . Given that

is the perimeter within any open set , one should expect that alone should somehow account for the perimeter of .

The topological boundary

It is natural to try to understand the relationship between the objects , , and the topological boundary . There is an elementary lemma that guarantees that the support (in the sense of distributions) of , and therefore also , is always contained in :

Lemma. The support of the vector-valued Radon measure is a subset of the topological boundary of .

Proof. To see this choose : then belongs to the open set and this implies that it belongs to an open neighborhood contained in the interior of or in the interior of . Let . If where is the closure of , then for and

Likewise, if then for so

With arbitrary it follows that is outside the support of .

The reduced boundary

The topological boundary turns out to be too crude for Caccioppoli sets because its Hausdorff measure overcompensates for the perimeter defined above. Indeed, the Caccioppoli set

representing a square together with a line segment sticking out on the left has perimeter , i.e. the extraneous line segment is ignored, while its topological boundary

has one-dimensional Hausdorff measure .

The "correct" boundary should therefore be a subset of . We define:

Definition 4. The reduced boundary of a Caccioppoli set is denoted by and is defined to be equal to be the collection of points at which the limit:

exists and has length equal to one, i.e. .

One can remark that by the Radon-Nikodym Theorem the reduced boundary is necessarily contained in the support of , which in turn is contained in the topological boundary as explained in the section above. That is:

The inclusions above are not necessarily equalities as the previous example shows. In that example, is the square with the segment sticking out, is the square, and is the square without its four corners.

De Giorgi's theorem

For convenience, in this section we treat only the case where , i.e. the set has (globally) finite perimeter. De Giorgi's theorem provides geometric intuition for the notion of reduced boundaries and confirms that it is the more natural definition for Caccioppoli sets by showing

i.e. that its Hausdorff measure equals the perimeter of the set. The statement of the theorem is quite long because it interrelates various geometric notions in one fell swoop.

Theorem. Suppose is a Caccioppoli set. Then at each point of the reduced boundary there exists a multiplicity one approximate tangent space of , i.e. a codimension-1 subspace of such that

for every continuous, compactly supported . In fact the subspace is the orthogonal complement of the unit vector

defined previously. This unit vector also satisfies

locally in , so it is interpreted as an approximate inward pointing unit normal vector to the reduced boundary . Finally, is (n-1)-rectifiable and the restriction of (n-1)-dimensional Hausdorff measure to is , i.e.

for all Borel sets .

In other words, up to -measure zero the reduced boundary is the smallest set on which is supported.

Applications

A Gauss–Green formula

From the definition of the vector Radon measure and from the properties of the perimeter, the following formula holds true:

This is one version of the divergence theorem for domains with non smooth boundary. De Giorgi's theorem can be used to formulate the same identity in terms of the reduced boundary and the approximate inward pointing unit normal vector . Precisely, the following equality holds

See also

Notes

  1. In the paper ( Cesari 1936 ). See the entries "Bounded variation" and "Total variation" for more details.
  2. See MR 56067.
  3. It lasted up to the tragic death of Caccioppoli in 1959.
  4. See MR 0062214.
  5. See ( Federer 1996 ).
  6. See the "References" section.

Related Research Articles

In particle physics, the Dirac equation is a relativistic wave equation derived by British physicist Paul Dirac in 1928. In its free form, or including electromagnetic interactions, it describes all spin-1/2 massive particles, called "Dirac particles", such as electrons and quarks for which parity is a symmetry. It is consistent with both the principles of quantum mechanics and the theory of special relativity, and was the first theory to account fully for special relativity in the context of quantum mechanics. It was validated by accounting for the fine structure of the hydrogen spectrum in a completely rigorous way. It has become vital in the building of the Standard Model.

In quantum field theory, the Dirac spinor is the spinor that describes all known fundamental particles that are fermions, with the possible exception of neutrinos. It appears in the plane-wave solution to the Dirac equation, and is a certain combination of two Weyl spinors, specifically, a bispinor that transforms "spinorially" under the action of the Lorentz group.

In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.

In probability theory, the Borel–Kolmogorov paradox is a paradox relating to conditional probability with respect to an event of probability zero. It is named after Émile Borel and Andrey Kolmogorov.

In mathematics, particularly in operator theory and C*-algebra theory, the continuous functional calculus is a functional calculus which allows the application of a continuous function to normal elements of a C*-algebra.

In theoretical physics, the Wess–Zumino model has become the first known example of an interacting four-dimensional quantum field theory with linearly realised supersymmetry. In 1974, Julius Wess and Bruno Zumino studied, using modern terminology, dynamics of a single chiral superfield whose cubic superpotential leads to a renormalizable theory. It is a special case of 4D N = 1 global supersymmetry.

In physics and mathematics, the Gibbs measure, named after Josiah Willard Gibbs, is a probability measure frequently seen in many problems of probability theory and statistical mechanics. It is a generalization of the canonical ensemble to infinite systems. The canonical ensemble gives the probability of the system X being in state x as

<span class="mw-page-title-main">Heat kernel</span> Fundamental solution to the heat equation, given boundary values

In the mathematical study of heat conduction and diffusion, a heat kernel is the fundamental solution to the heat equation on a specified domain with appropriate boundary conditions. It is also one of the main tools in the study of the spectrum of the Laplace operator, and is thus of some auxiliary importance throughout mathematical physics. The heat kernel represents the evolution of temperature in a region whose boundary is held fixed at a particular temperature, such that an initial unit of heat energy is placed at a point at time t = 0.

In mathematics, a locally integrable function is a function which is integrable on every compact subset of its domain of definition. The importance of such functions lies in the fact that their function space is similar to Lp spaces, but its members are not required to satisfy any growth restriction on their behavior at the boundary of their domain : in other words, locally integrable functions can grow arbitrarily fast at the domain boundary, but are still manageable in a way similar to ordinary integrable functions.

In conformal field theory and representation theory, a W-algebra is an associative algebra that generalizes the Virasoro algebra. W-algebras were introduced by Alexander Zamolodchikov, and the name "W-algebra" comes from the fact that Zamolodchikov used the letter W for one of the elements of one of his examples.

In mathematics, the Schur orthogonality relations, which were proven by Issai Schur through Schur's lemma, express a central fact about representations of finite groups. They admit a generalization to the case of compact groups in general, and in particular compact Lie groups, such as the rotation group SO(3).

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

In mathematics, the method of steepest descent or saddle-point method is an extension of Laplace's method for approximating an integral, where one deforms a contour integral in the complex plane to pass near a stationary point, in roughly the direction of steepest descent or stationary phase. The saddle-point approximation is used with integrals in the complex plane, whereas Laplace’s method is used with real integrals.

<span class="mw-page-title-main">Weyl equation</span> Relativistic wave equation describing massless fermions

In physics, particularly in quantum field theory, the Weyl equation is a relativistic wave equation for describing massless spin-1/2 particles called Weyl fermions. The equation is named after Hermann Weyl. The Weyl fermions are one of the three possible types of elementary fermions, the other two being the Dirac and the Majorana fermions.

In algebraic geometry and differential geometry, the nonabelian Hodge correspondence or Corlette–Simpson correspondence is a correspondence between Higgs bundles and representations of the fundamental group of a smooth, projective complex algebraic variety, or a compact Kähler manifold.

In geometry, a valuation is a finitely additive function from a collection of subsets of a set to an abelian semigroup. For example, Lebesgue measure is a valuation on finite unions of convex bodies of Other examples of valuations on finite unions of convex bodies of are surface area, mean width, and Euler characteristic.

In mathematics, calculus on Euclidean space is a generalization of calculus of functions in one or several variables to calculus of functions on Euclidean space as well as a finite-dimensional real vector space. This calculus is also known as advanced calculus, especially in the United States. It is similar to multivariable calculus but is somewhat more sophisticated in that it uses linear algebra more extensively and covers some concepts from differential geometry such as differential forms and Stokes' formula in terms of differential forms. This extensive use of linear algebra also allows a natural generalization of multivariable calculus to calculus on Banach spaces or topological vector spaces.

Hamiltonian truncation is a numerical method used to study quantum field theories (QFTs) in spacetime dimensions. Hamiltonian truncation is an adaptation of the Rayleigh–Ritz method from quantum mechanics. It is closely related to the exact diagonalization method used to treat spin systems in condensed matter physics. The method is typically used to study QFTs on spacetimes of the form , specifically to compute the spectrum of the Hamiltonian along . A key feature of Hamiltonian truncation is that an explicit ultraviolet cutoff is introduced, akin to the lattice spacing a in lattice Monte Carlo methods. Since Hamiltonian truncation is a nonperturbative method, it can be used to study strong-coupling phenomena like spontaneous symmetry breaking.

In supersymmetry, 4D supergravity is the theory of supergravity in four dimensions with a single supercharge. It contains exactly one supergravity multiplet, consisting of a graviton and a gravitino, but can also have an arbitrary number of chiral and vector supermultiplets, with supersymmetry imposing stringent constraints on how these can interact. The theory is primarily determined by three functions, those being the Kähler potential, the superpotential, and the gauge kinetic matrix. Many of its properties are strongly linked to the geometry associated to the scalar fields in the chiral multiplets. After the simplest form of this supergravity was first discovered, a theory involving only the supergravity multiplet, the following years saw an effort to incorporate different matter multiplets, with the general action being derived in 1982 by Eugène Cremmer, Sergio Ferrara, Luciano Girardello, and Antonie Van Proeyen.

In supersymmetry, type I supergravity is the theory of supergravity in ten dimensions with a single supercharge. It consists of a single supergravity multiplet and a single Yang–Mills multiplet. The full non-abelian action was first derived in 1983 by George Chapline and Nicholas Manton. Classically the theory can admit any gauge group, but a consistent quantum theory resulting in anomaly cancellation only exists if the gauge group is either or . Both these supergravities are realised as the low-energy limits of string theories, in particular of type I string theory and of the two heterotic string theories.

References

Historical references

Scientific references