Geometric measure theory

Last updated

In mathematics, geometric measure theory (GMT) is the study of geometric properties of sets (typically in Euclidean space) through measure theory. It allows mathematicians to extend tools from differential geometry to a much larger class of surfaces that are not necessarily smooth.

Contents

History

Geometric measure theory was born out of the desire to solve Plateau's problem (named after Joseph Plateau) which asks if for every smooth closed curve in there exists a surface of least area among all surfaces whose boundary equals the given curve. Such surfaces mimic soap films.

The problem had remained open since it was posed in 1760 by Lagrange. It was solved independently in the 1930s by Jesse Douglas and Tibor Radó under certain topological restrictions. In 1960 Herbert Federer and Wendell Fleming used the theory of currents with which they were able to solve the orientable Plateau's problem analytically without topological restrictions, thus sparking geometric measure theory. Later Jean Taylor after Fred Almgren proved Plateau's laws for the kind of singularities that can occur in these more general soap films and soap bubbles clusters.

Important notions

The following objects are central in geometric measure theory:

The following theorems and concepts are also central:

Examples

The Brunn–Minkowski inequality for the n-dimensional volumes of convex bodies K and L,

can be proved on a single page and quickly yields the classical isoperimetric inequality. The Brunn–Minkowski inequality also leads to Anderson's theorem in statistics. The proof of the Brunn–Minkowski inequality predates modern measure theory; the development of measure theory and Lebesgue integration allowed connections to be made between geometry and analysis, to the extent that in an integral form of the Brunn–Minkowski inequality known as the Prékopa–Leindler inequality the geometry seems almost entirely absent.

See also

Related Research Articles

<span class="mw-page-title-main">Geometry of numbers</span>

Geometry of numbers is the part of number theory which uses geometry for the study of algebraic numbers. Typically, a ring of algebraic integers is viewed as a lattice in and the study of these lattices provides fundamental information on algebraic numbers. The geometry of numbers was initiated by Hermann Minkowski (1910).

In mathematics, the isoperimetric inequality is a geometric inequality involving the perimeter of a set and its volume. In -dimensional space the inequality lower bounds the surface area or perimeter of a set by its volume ,

<span class="mw-page-title-main">Minkowski addition</span> Sums vector sets A and B by adding each vector in A to each vector in B

In geometry, the Minkowski sum of two sets of position vectors A and B in Euclidean space is formed by adding each vector in A to each vector in B:

In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assigns a number in [0,∞] to each set in or, more generally, in any metric space.

In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix.

In mathematics, Mostow's rigidity theorem, or strong rigidity theorem, or Mostow–Prasad rigidity theorem, essentially states that the geometry of a complete, finite-volume hyperbolic manifold of dimension greater than two is determined by the fundamental group and hence unique. The theorem was proven for closed manifolds by Mostow (1968) and extended to finite volume manifolds by Marden (1974) in 3 dimensions, and by Prasad (1973) in all dimensions at least 3. Gromov (1981) gave an alternate proof using the Gromov norm. Besson, Courtois & Gallot (1996) gave the simplest available proof.

In mathematics, a varifold is, loosely speaking, a measure-theoretic generalization of the concept of a differentiable manifold, by replacing differentiability requirements with those provided by rectifiable sets, while maintaining the general algebraic structure usually seen in differential geometry. Varifolds generalize the idea of a rectifiable current, and are studied in geometric measure theory.

In mathematics, the Minkowski–Steiner formula is a formula relating the surface area and volume of compact subsets of Euclidean space. More precisely, it defines the surface area as the "derivative" of enclosed volume in an appropriate sense.

In mathematics, the Brunn–Minkowski theorem is an inequality relating the volumes of compact subsets of Euclidean space. The original version of the Brunn–Minkowski theorem applied to convex sets; the generalization to compact nonconvex sets stated here is due to Lazar Lyusternik (1935).

In mathematics, a Caccioppoli set is a set whose boundary is measurable and has a finite measure. A synonym is set of (locally) finite perimeter. Basically, a set is a Caccioppoli set if its characteristic function is a function of bounded variation.

In mathematics, a Borel measure μ on n-dimensional Euclidean space is called logarithmically concave if, for any compact subsets A and B of and 0 < λ < 1, one has

In mathematics, the Prékopa–Leindler inequality is an integral inequality closely related to the reverse Young's inequality, the Brunn–Minkowski inequality and a number of other important and classical inequalities in analysis. The result is named after the Hungarian mathematicians András Prékopa and László Leindler.

In mathematics, Vitale's random Brunn–Minkowski inequality is a theorem due to Richard Vitale that generalizes the classical Brunn–Minkowski inequality for compact subsets of n-dimensional Euclidean space Rn to random compact sets.

In mathematics, particularly, in asymptotic convex geometry, Milman's reverse Brunn–Minkowski inequality is a result due to Vitali Milman that provides a reverse inequality to the famous Brunn–Minkowski inequality for convex bodies in n-dimensional Euclidean space Rn. Namely, it bounds the volume of the Minkowski sum of two bodies from above in terms of the volumes of the bodies.

In mathematics, the Borell–Brascamp–Lieb inequality is an integral inequality due to many different mathematicians but named after Christer Borell, Herm Jan Brascamp and Elliott Lieb.

Herbert Federer was an American mathematician. He is one of the creators of geometric measure theory, at the meeting point of differential geometry and mathematical analysis.

The Minkowski content, or the boundary measure, of a set is a basic concept that uses concepts from geometry and measure theory to generalize the notions of length of a smooth curve in the plane, and area of a smooth surface in space, to arbitrary measurable sets.

In the mathematical field of differential geometry, a calibrated manifold is a Riemannian manifold (M,g) of dimension n equipped with a differential p-formφ (for some 0 ≤ pn) which is a calibration, meaning that:

<span class="mw-page-title-main">Leon Simon</span> Australian mathematician (born 1945)

Leon Melvyn Simon, born in 1945, is a Leroy P. Steele Prize and Bôcher Prize-winning mathematician, known for deep contributions to the fields of geometric analysis, geometric measure theory, and partial differential equations. He is currently Professor Emeritus in the Mathematics Department at Stanford University.

Lagrangian field theory is a formalism in classical field theory. It is the field-theoretic analogue of Lagrangian mechanics. Lagrangian mechanics is used to analyze the motion of a system of discrete particles each with a finite number of degrees of freedom. Lagrangian field theory applies to continua and fields, which have an infinite number of degrees of freedom.

References