In mathematics, a Kakeya set, or Besicovitch set, is a set of points in Euclidean space which contains a unit line segment in every direction. For instance, a disk of radius 1/2 in the Euclidean plane, or a ball of radius 1/2 in three-dimensional space, forms a Kakeya set. Much of the research in this area has studied the problem of how small such sets can be. Besicovitch showed that there are Besicovitch sets of measure zero.
A Kakeya needle set (sometimes also known as a Kakeya set) is a (Besicovitch) set in the plane with a stronger property, that a unit line segment can be rotated continuously through 180 degrees within it, returning to its original position with reversed orientation. Again, the disk of radius 1/2 is an example of a Kakeya needle set.
The Kakeya needle problem asks whether there is a minimum area of a region in the plane, in which a needle of unit length can be turned through 360°. This question was first posed, for convex regions, by SōichiKakeya ( 1917 ). The minimum area for convex sets is achieved by an equilateral triangle of height 1 and area 1/√3, as Pál showed. [1]
Kakeya seems to have suggested that the Kakeya set of minimum area, without the convexity restriction, would be a three-pointed deltoid shape. However, this is false; there are smaller non-convex Kakeya sets.
Besicovitch was able to show that there is no lower bound > 0 for the area of such a region , in which a needle of unit length can be turned around. That is, for every , there is region of area within which the needle can move through a continuous motion that rotates it a full 360 degrees. [3] This built on earlier work of his, on plane sets which contain a unit segment in each orientation. Such a set is now called a Besicovitch set. Besicovitch's work showing such a set could have arbitrarily small measure was from 1919. The problem may have been considered by analysts before that.
One method of constructing a Besicovitch set (see figure for corresponding illustrations) is known as a "Perron tree" after Oskar Perron who was able to simplify Besicovitch's original construction. [4] The precise construction and numerical bounds are given in Besicovitch's popularization. [2]
The first observation to make is that the needle can move in a straight line as far as it wants without sweeping any area. This is because the needle is a zero width line segment. The second trick of Pál, known as Pál joins [5] describes how to move the needle between any two locations that are parallel while sweeping negligible area. The needle will follow the shape of an "N". It moves from the first location some distance up the left of the "N", sweeps out the angle to the middle diagonal, moves down the diagonal, sweeps out the second angle, and them moves up the parallel right side of the "N" until it reaches the required second location. The only non-zero area regions swept are the two triangles of height one and the angle at the top of the "N". The swept area is proportional to this angle which is proportional to .
The construction starts with any triangle with height 1 and some substantial angle at the top through which the needle can easily sweep. The goal is to do many operations on this triangle to make its area smaller while keeping the directions though which the needle can sweep the same. First consider dividing the triangle in two and translating the pieces over each other so that their bases overlap in a way that minimizes the total area. The needle is able to sweep out the same directions by sweeping out those given by the first triangle, jumping over to the second, and then sweeping out the directions given by the second. The needle can jump triangles using the "N" technique because the two lines at which the original triangle was cut are parallel.
Now, suppose we divide our triangle into 2n subtriangles. The figure shows eight. For each consecutive pair of triangles, perform the same overlapping operation we described before to get half as many new shapes, each consisting of two overlapping triangles. Next, overlap consecutive pairs of these new shapes by shifting them so that their bases overlap in a way that minimizes the total area. Repeat this n times until there is only one shape. Again, the needle is able to sweep out the same directions by sweeping those out in each of the 2n subtriangles in order of their direction. The needle can jump consecutive triangles using the "N" technique because the two lines at which these triangle were cut are parallel.
What remains is to compute the area of the final shape. The proof is too hard to present here. Instead, we will just argue how the numbers might go. Looking at the figure, one sees that the 2n subtriangles overlap a lot. All of them overlap at the bottom, half of them at the bottom of the left branch, a quarter of them at the bottom of the left left branch, and so on. Suppose that the area of each shape created with i merging operations from 2i subtriangles is bounded by Ai. Before merging two of these shapes, they have area bounded be 2Ai. Then we move the two shapes together in the way that overlaps them as much as possible. In a worst case, these two regions are two 1 by ε rectangles perpendicular to each other so that they overlap at an area of only ε2. But the two shapes that we have constructed, if long and skinny, point in much of the same direction because they are made from consecutive groups of subtriangles. The handwaving states that they over lap by at least 1% of their area. Then the merged area would be bounded by Ai+1 = 1.99 Ai. The area of the original triangle is bounded by 1. Hence, the area of each subtriangle is bounded by A0 = 2-n and the final shape has area bounded by An = 1.99n × 2-n. In actuality, a careful summing up all areas that do not overlap gives that the area of the final region is much bigger, namely, 1/n. As n grows, this area shrinks to zero. A Besicovitch set can be created by combining six rotations of a Perron tree created from an equilateral triangle. A similar construction can be made with parallelograms
There are other methods for constructing Besicovitch sets of measure zero aside from the 'sprouting' method. For example, Kahane uses Cantor sets to construct a Besicovitch set of measure zero in the two-dimensional plane. [6]
In 1941, H. J. Van Alphen [7] showed that there are arbitrary small Kakeya needle sets inside a circle with radius 2 + ε (arbitrary ε > 0). Simply connected Kakeya needle sets with smaller area than the deltoid were found in 1965. Melvin Bloom and I. J. Schoenberg independently presented Kakeya needle sets with areas approaching to , the Bloom-Schoenberg number. Schoenberg conjectured that this number is the lower bound for the area of simply connected Kakeya needle sets. However, in 1971, F. Cunningham [8] showed that, given ε > 0, there is a simply connected Kakeya needle set of area less than ε contained in a circle of radius 1.
Although there are Kakeya needle sets of arbitrarily small positive measure and Besicovich sets of measure 0, there are no Kakeya needle sets of measure 0.
The same question of how small these Besicovitch sets could be was then posed in higher dimensions, giving rise to a number of conjectures known collectively as the Kakeya conjectures, and have helped initiate the field of mathematics known as geometric measure theory. In particular, if there exist Besicovitch sets of measure zero, could they also have s-dimensional Hausdorff measure zero for some dimension s less than the dimension of the space in which they lie? This question gives rise to the following conjecture:
This is known to be true for n = 1, 2 but only partial results are known in higher dimensions.
A modern way of approaching this problem is to consider a particular type of maximal function, which we construct as follows: Denote Sn−1 ⊂ Rn to be the unit sphere in n-dimensional space. Define to be the cylinder of length 1, radius δ > 0, centered at the point a ∈ Rn, and whose long side is parallel to the direction of the unit vector e ∈ Sn−1. Then for a locally integrable function f, we define the Kakeya maximal function of f to be
where m denotes the n-dimensional Lebesgue measure. Notice that is defined for vectors e in the sphere Sn−1.
Then there is a conjecture for these functions that, if true, will imply the Kakeya set conjecture for higher dimensions:
Some results toward proving the Kakeya conjecture are the following:
Somewhat surprisingly, these conjectures have been shown to be connected to a number of questions in other fields, notably in harmonic analysis. For instance, in 1971, Charles Fefferman was able to use the Besicovitch set construction to show that in dimensions greater than 1, truncated Fourier integrals taken over balls centered at the origin with radii tending to infinity need not converge in Lp norm when p ≠ 2 (this is in contrast to the one-dimensional case where such truncated integrals do converge). [16]
Analogues of the Kakeya problem include considering sets containing more general shapes than lines, such as circles.
A generalization of the Kakeya conjecture is to consider sets that contain, instead of segments of lines in every direction, but, say, portions of k-dimensional subspaces. Define an (n, k)-Besicovitch setK to be a compact set in Rn containing a translate of every k-dimensional unit disk which has Lebesgue measure zero. That is, if B denotes the unit ball centered at zero, for every k-dimensional subspace P, there exists x ∈ Rn such that (P ∩ B) + x ⊆ K. Hence, a (n, 1)-Besicovitch set is the standard Besicovitch set described earlier.
In 1979, Marstrand [21] proved that there were no (3, 2)-Besicovitch sets. At around the same time, however, Falconer [22] proved that there were no (n, k)-Besicovitch sets for 2k > n. The best bound to date is by Bourgain, [23] who proved in that no such sets exist when 2k−1 + k > n.
In 1999, Wolff posed the finite field analogue to the Kakeya problem, in hopes that the techniques for solving this conjecture could be carried over to the Euclidean case.
Zeev Dvir proved this conjecture in 2008, showing that the statement holds for cn = 1/n!. [24] [25] In his proof, he observed that any polynomial in n variables of degree less than |F| vanishing on a Kakeya set must be identically zero. On the other hand, the polynomials in n variables of degree less than |F| form a vector space of dimension
Therefore, there is at least one non-trivial polynomial of degree less than |F| that vanishes on any given set with less than this number of points. Combining these two observations shows that Kakeya sets must have at least |F|n/n! points.
It is not clear whether the techniques will extend to proving the original Kakeya conjecture but this proof does lend credence to the original conjecture by making essentially algebraic counterexamples unlikely. Dvir has written a survey article on progress on the finite field Kakeya problem and its relationship to randomness extractors. [26]
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra over the real or complex numbers that at the same time is also a Banach space, that is, a normed space that is complete in the metric induced by the norm. The norm is required to satisfy
In mathematics, Hausdorff dimension is a measure of roughness, or more specifically, fractal dimension, that was introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a line segment is 1, of a square is 2, and of a cube is 3. That is, for sets of points that define a smooth shape or a shape that has a small number of corners—the shapes of traditional geometry and science—the Hausdorff dimension is an integer agreeing with the usual sense of dimension, also known as the topological dimension. However, formulas have also been developed that allow calculation of the dimension of other less simple objects, where, solely on the basis of their properties of scaling and self-similarity, one is led to the conclusion that particular objects—including fractals—have non-integer Hausdorff dimensions. Because of the significant technical advances made by Abram Samoilovitch Besicovitch allowing computation of dimensions for highly irregular or "rough" sets, this dimension is also commonly referred to as the Hausdorff–Besicovitch dimension.
In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean n-spaces. For lower dimensions n = 1, 2, or 3, it coincides with the standard measure of length, area, or volume. In general, it is also called n-dimensional volume, n-volume, hypervolume, or simply volume. It is used throughout real analysis, in particular to define Lebesgue integration. Sets that can be assigned a Lebesgue measure are called Lebesgue-measurable; the measure of the Lebesgue-measurable set A is here denoted by λ(A).
In the branch of mathematics known as real analysis, the Riemann integral, created by Bernhard Riemann, was the first rigorous definition of the integral of a function on an interval. It was presented to the faculty at the University of Göttingen in 1854, but not published in a journal until 1868. For many functions and practical applications, the Riemann integral can be evaluated by the fundamental theorem of calculus or approximated by numerical integration, or simulated using Monte Carlo integration.
In number theory, the study of Diophantine approximation deals with the approximation of real numbers by rational numbers. It is named after Diophantus of Alexandria.
In mathematics, the isoperimetric inequality is a geometric inequality involving the square of the circumference of a closed curve in the plane and the area of a plane region it encloses, as well as its various generalizations. Isoperimetric literally means "having the same perimeter". Specifically, the isoperimetric inequality states, for the length L of a closed curve and the area A of the planar region that it encloses, that
Abram Samoilovitch Besicovitch was a Russian mathematician, who worked mainly in England. He was born in Berdyansk on the Sea of Azov to a Karaite Jewish family.
In graph theory, graph coloring is a special case of graph labeling; it is an assignment of labels traditionally called "colors" to elements of a graph subject to certain constraints. In its simplest form, it is a way of coloring the vertices of a graph such that no two adjacent vertices are of the same color; this is called a vertex coloring. Similarly, an edge coloring assigns a color to each edge so that no two adjacent edges are of the same color, and a face coloring of a planar graph assigns a color to each face or region so that no two faces that share a boundary have the same color.
In discrete geometry and discrepancy theory, the Heilbronn triangle problem is a problem of placing points in the plane, avoiding triangles of small area. It is named after Hans Heilbronn, who conjectured that, no matter how points are placed in a given area, the smallest triangle area will be at most inversely proportional to the square of the number of points. His conjecture was proven false, but the asymptotic growth rate of the minimum triangle area remains unknown.
In mathematics, the corona theorem is a result about the spectrum of the bounded holomorphic functions on the open unit disc, conjectured by Kakutani (1941) and proved by Lennart Carleson.
In the mathematical area of graph theory, a triangle-free graph is an undirected graph in which no three vertices form a triangle of edges. Triangle-free graphs may be equivalently defined as graphs with clique number ≤ 2, graphs with girth ≥ 4, graphs with no induced 3-cycle, or locally independent graphs.
In mathematics, the Vitali covering lemma is a combinatorial and geometric result commonly used in measure theory of Euclidean spaces. This lemma is an intermediate step, of independent interest, in the proof of the Vitali covering theorem. The covering theorem is credited to the Italian mathematician Giuseppe Vitali. The theorem states that it is possible to cover, up to a Lebesgue-negligible set, a given subset E of Rd by a disjoint family extracted from a Vitali covering of E.
In mathematical analysis, a Besicovitch cover, named after Abram Samoilovitch Besicovitch, is an open cover of a subset E of the Euclidean space RN by balls such that each point of E is the center of some ball in the cover.
In arithmetic combinatorics, the Erdős–Szemerédi theorem states that for every finite set A of integers, at least one of the sets A + A and A · A form a significantly larger set. More precisely, the Erdős–Szemerédi theorem states that there exist positive constants c and ε such that, for any non-empty set A ⊂ ℕ,
In geometric measure theory, Falconer's conjecture, named after Kenneth Falconer, is an unsolved problem concerning the sets of Euclidean distances between points in compact -dimensional spaces. Intuitively, it states that a set of points that is large in its Hausdorff dimension must determine a set of distances that is large in measure. More precisely, if is a compact set of points in -dimensional Euclidean space whose Hausdorff dimension is strictly greater than , then the conjecture states that the set of distances between pairs of points in must have nonzero Lebesgue measure.
In affine geometry, a cap set is a subset of the affine space where no three elements sum to the zero vector. The cap set problem is the problem of finding the size of the largest possible cap set, as a function of . The first few cap set sizes are 1, 2, 4, 9, 20, 45, 112, ....
Roth's theorem on arithmetic progressions is a result in additive combinatorics concerning the existence of arithmetic progressions in subsets of the natural numbers. It was first proven by Klaus Roth in 1953. Roth's theorem is a special case of Szemerédi's theorem for the case .
In mathematics, the polynomial method is an algebraic approach to combinatorics problems that involves capturing some combinatorial structure using polynomials and proceeding to argue about their algebraic properties. Recently, the polynomial method has led to the development of remarkably simple solutions to several long-standing open problems. The polynomial method encompasses a wide range of specific techniques for using polynomials and ideas from areas such as algebraic geometry to solve combinatorics problems. While a few techniques that follow the framework of the polynomial method, such as Alon's Combinatorial Nullstellensatz, have been known since the 1990s, it was not until around 2010 that a broader framework for the polynomial method has been developed.
In plane geometry the Kovner–Besicovitch measure is a number defined for any bounded convex set describing how close to being centrally symmetric it is. It is the fraction of the area of the set that can be covered by its largest centrally symmetric subset.