Area formula (geometric measure theory)

Last updated

In geometric measure theory the area formula relates the Hausdorff measure of the image of a Lipschitz map, while accounting for multiplicity, to the integral of the Jacobian of the map. It is one of the fundamental results of the field that has connections, for example, to rectifiability and Sard's theorem.

Definition: Given and , the multiplicity function , is the (possibly infinite) number of points in the preimage .

The multiplicity function is also called the Banach indicatrix. Note that, . We will denote by the n-dimensional Hausdorff measure.

Theorem: If is Lipschitz, then for any measurable ,

where

is the Jacobian of .

The measurability of the multiplicity function is part of the claim. The Jacobian is defined almost everywhere by Rademacher's differentiability theorem.

Theorem was proved first by Herbert Federer ( Federer 1969 ).

Sources

Related Research Articles

In mathematics, specifically in measure theory, a Borel measure on a topological space is a measure that is defined on all open sets. Some authors require additional restrictions on the measure, as described below.

In mathematics, a contraction mapping, or contraction or contractor, on a metric space (M, d) is a function f from M to itself, with the property that there is some real number such that for all x and y in M,

In commutative algebra, the prime spectrum of a ring R is the set of all prime ideals of R, and is usually denoted by ; in algebraic geometry it is simultaneously a topological space equipped with the sheaf of rings .

<span class="mw-page-title-main">Lipschitz continuity</span> Strong form of uniform continuity

In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is limited in how fast it can change: there exists a real number such that, for every pair of points on the graph of this function, the absolute value of the slope of the line connecting them is not greater than this real number; the smallest such bound is called the Lipschitz constant of the function. For instance, every function that has bounded first derivatives is Lipschitz continuous.

<span class="mw-page-title-main">Projective variety</span>

In algebraic geometry, a projective variety over an algebraically closed field k is a subset of some projective n-space over k that is the zero-locus of some finite family of homogeneous polynomials of n + 1 variables with coefficients in k, that generate a prime ideal, the defining ideal of the variety. Equivalently, an algebraic variety is projective if it can be embedded as a Zariski closed subvariety of .

In mathematics, specifically real analysis and functional analysis, the Kirszbraun theorem states that if U is a subset of some Hilbert space H1, and H2 is another Hilbert space, and

In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that assigns a number in [0,∞] to each set in or, more generally, in any metric space.

The Arzelà–Ascoli theorem is a fundamental result of mathematical analysis giving necessary and sufficient conditions to decide whether every sequence of a given family of real-valued continuous functions defined on a closed and bounded interval has a uniformly convergent subsequence. The main condition is the equicontinuity of the family of functions. The theorem is the basis of many proofs in mathematics, including that of the Peano existence theorem in the theory of ordinary differential equations, Montel's theorem in complex analysis, and the Peter–Weyl theorem in harmonic analysis and various results concerning compactness of integral operators.

In mathematics, Sard's theorem, also known as Sard's lemma or the Morse–Sard theorem, is a result in mathematical analysis that asserts that the set of critical values of a smooth function f from one Euclidean space or manifold to another is a null set, i.e., it has Lebesgue measure 0. This makes the set of critical values "small" in the sense of a generic property. The theorem is named for Anthony Morse and Arthur Sard.

In mathematics, a rectifiable set is a set that is smooth in a certain measure-theoretic sense. It is an extension of the idea of a rectifiable curve to higher dimensions; loosely speaking, a rectifiable set is a rigorous formulation of a piece-wise smooth set. As such, it has many of the desirable properties of smooth manifolds, including tangent spaces that are defined almost everywhere. Rectifiable sets are the underlying object of study in geometric measure theory.

In mathematics, more particularly in functional analysis, differential topology, and geometric measure theory, a k-current in the sense of Georges de Rham is a functional on the space of compactly supported differential k-forms, on a smooth manifold M. Currents formally behave like Schwartz distributions on a space of differential forms, but in a geometric setting, they can represent integration over a submanifold, generalizing the Dirac delta function, or more generally even directional derivatives of delta functions (multipoles) spread out along subsets of M.

In mathematics, a varifold is, loosely speaking, a measure-theoretic generalization of the concept of a differentiable manifold, by replacing differentiability requirements with those provided by rectifiable sets, while maintaining the general algebraic structure usually seen in differential geometry. Varifolds generalize the idea of a rectifiable current, and are studied in geometric measure theory.

In mathematical analysis, Rademacher's theorem, named after Hans Rademacher, states the following: If U is an open subset of Rn and f: URm is Lipschitz continuous, then f is differentiable almost everywhere in U; that is, the points in U at which f is not differentiable form a set of Lebesgue measure zero. Differentiability here refers to infinitesimal approximability by a linear map, which in particular asserts the existence of the coordinate-wise partial derivatives.

In mathematics, a Caccioppoli set is a set whose boundary is measurable and has a finite measure. A synonym is set of (locally) finite perimeter. Basically, a set is a Caccioppoli set if its characteristic function is a function of bounded variation.

<span class="mw-page-title-main">Harmonic measure</span>

In mathematics, especially potential theory, harmonic measure is a concept related to the theory of harmonic functions that arises from the solution of the classical Dirichlet problem.

The Minkowski content, or the boundary measure, of a set is a basic concept that uses concepts from geometry and measure theory to generalize the notions of length of a smooth curve in the plane, and area of a smooth surface in space, to arbitrary measurable sets.

In the mathematical field of geometric measure theory, the coarea formula expresses the integral of a function over an open set in Euclidean space in terms of integrals over the level sets of another function. A special case is Fubini's theorem, which says under suitable hypotheses that the integral of a function over the region enclosed by a rectangular box can be written as the iterated integral over the level sets of the coordinate functions. Another special case is integration in spherical coordinates, in which the integral of a function on Rn is related to the integral of the function over spherical shells: level sets of the radial function. The formula plays a decisive role in the modern study of isoperimetric problems.

In the theory of stochastic processes in discrete time, a part of the mathematical theory of probability, the Doob decomposition theorem gives a unique decomposition of every adapted and integrable stochastic process as the sum of a martingale and a predictable process starting at zero. The theorem was proved by and is named for Joseph L. Doob.

In geometric measure theory an approximate tangent space is a measure theoretic generalization of the concept of a tangent space for a differentiable manifold.

In mathematics, and especially differential and algebraic geometry, K-stability is an algebro-geometric stability condition, for complex manifolds and complex algebraic varieties. The notion of K-stability was first introduced by Gang Tian and reformulated more algebraically later by Simon Donaldson. The definition was inspired by a comparison to geometric invariant theory (GIT) stability. In the special case of Fano varieties, K-stability precisely characterises the existence of Kähler–Einstein metrics. More generally, on any compact complex manifold, K-stability is conjectured to be equivalent to the existence of constant scalar curvature Kähler metrics.