Support (mathematics)

Last updated

In mathematics, the support of a real-valued function is the subset of the function domain containing the elements which are not mapped to zero. If the domain of is a topological space, then the support of is instead defined as the smallest closed set containing all points not mapped to zero. This concept is used very widely in mathematical analysis.

Contents

Formulation

Suppose that is a real-valued function whose domain is an arbitrary set The set-theoretic support of written is the set of points in where is non-zero:

The support of is the smallest subset of with the property that is zero on the subset's complement. If for all but a finite number of points then is said to have finite support.

If the set has an additional structure (for example, a topology), then the support of is defined in an analogous way as the smallest subset of of an appropriate type such that vanishes in an appropriate sense on its complement. The notion of support also extends in a natural way to functions taking values in more general sets than and to other objects, such as measures or distributions.

Closed support

The most common situation occurs when is a topological space (such as the real line or -dimensional Euclidean space) and is a continuous real- (or complex-) valued function. In this case, the support of , , or the closed supportof, is defined topologically as the closure (taken in ) of the subset of where is non-zero [1] [2] [3] that is,

Since the intersection of closed sets is closed, is the intersection of all closed sets that contain the set-theoretic support of

For example, if is the function defined by

then , the support of , or the closed support of , is the closed interval since is non-zero on the open interval and the closure of this set is

The notion of closed support is usually applied to continuous functions, but the definition makes sense for arbitrary real or complex-valued functions on a topological space, and some authors do not require that (or ) be continuous. [4]

Compact support

Functions with compact support on a topological space are those whose closed support is a compact subset of If is the real line, or -dimensional Euclidean space, then a function has compact support if and only if it has bounded support, since a subset of is compact if and only if it is closed and bounded.

For example, the function defined above is a continuous function with compact support If is a smooth function then because is identically on the open subset all of 's partial derivatives of all orders are also identically on

The condition of compact support is stronger than the condition of vanishing at infinity. For example, the function defined by

vanishes at infinity, since as but its support is not compact.

Real-valued compactly supported smooth functions on a Euclidean space are called bump functions. Mollifiers are an important special case of bump functions as they can be used in distribution theory to create sequences of smooth functions approximating nonsmooth (generalized) functions, via convolution.

In good cases, functions with compact support are dense in the space of functions that vanish at infinity, but this property requires some technical work to justify in a given example. As an intuition for more complex examples, and in the language of limits, for any any function on the real line that vanishes at infinity can be approximated by choosing an appropriate compact subset of such that

for all where is the indicator function of Every continuous function on a compact topological space has compact support since every closed subset of a compact space is indeed compact.

Essential support

If is a topological measure space with a Borel measure (such as or a Lebesgue measurable subset of equipped with Lebesgue measure), then one typically identifies functions that are equal -almost everywhere. In that case, the essential support of a measurable function written is defined to be the smallest closed subset of such that -almost everywhere outside Equivalently, is the complement of the largest open set on which -almost everywhere [5]

The essential support of a function depends on the measure as well as on and it may be strictly smaller than the closed support. For example, if is the Dirichlet function that is on irrational numbers and on rational numbers, and is equipped with Lebesgue measure, then the support of is the entire interval but the essential support of is empty, since is equal almost everywhere to the zero function.

In analysis one nearly always wants to use the essential support of a function, rather than its closed support, when the two sets are different, so is often written simply as and referred to as the support. [5] [6]

Generalization

If is an arbitrary set containing zero, the concept of support is immediately generalizable to functions Support may also be defined for any algebraic structure with identity (such as a group, monoid, or composition algebra), in which the identity element assumes the role of zero. For instance, the family of functions from the natural numbers to the integers is the uncountable set of integer sequences. The subfamily is the countable set of all integer sequences that have only finitely many nonzero entries.

Functions of finite support are used in defining algebraic structures such as group rings and free abelian groups. [7]

In probability and measure theory

In probability theory, the support of a probability distribution can be loosely thought of as the closure of the set of possible values of a random variable having that distribution. There are, however, some subtleties to consider when dealing with general distributions defined on a sigma algebra, rather than on a topological space.

More formally, if is a random variable on then the support of is the smallest closed set such that

In practice however, the support of a discrete random variable is often defined as the set and the support of a continuous random variable is defined as the set where is a probability density function of (the set-theoretic support). [8]

Note that the word support can refer to the logarithm of the likelihood of a probability density function. [9]

Support of a distribution

It is possible also to talk about the support of a distribution, such as the Dirac delta function on the real line. In that example, we can consider test functions which are smooth functions with support not including the point Since (the distribution applied as linear functional to ) is for such functions, we can say that the support of is only. Since measures (including probability measures) on the real line are special cases of distributions, we can also speak of the support of a measure in the same way.

Suppose that is a distribution, and that is an open set in Euclidean space such that, for all test functions such that the support of is contained in Then is said to vanish on Now, if vanishes on an arbitrary family of open sets, then for any test function supported in a simple argument based on the compactness of the support of and a partition of unity shows that as well. Hence we can define the support of as the complement of the largest open set on which vanishes. For example, the support of the Dirac delta is

Singular support

In Fourier analysis in particular, it is interesting to study the singular support of a distribution. This has the intuitive interpretation as the set of points at which a distribution fails to be a smooth function.

For example, the Fourier transform of the Heaviside step function can, up to constant factors, be considered to be (a function) except at While is clearly a special point, it is more precise to say that the transform of the distribution has singular support : it cannot accurately be expressed as a function in relation to test functions with support including It can be expressed as an application of a Cauchy principal value improper integral.

For distributions in several variables, singular supports allow one to define wave front sets and understand Huygens' principle in terms of mathematical analysis. Singular supports may also be used to understand phenomena special to distribution theory, such as attempts to 'multiply' distributions (squaring the Dirac delta function fails – essentially because the singular supports of the distributions to be multiplied should be disjoint).

Family of supports

An abstract notion of family of supports on a topological space suitable for sheaf theory, was defined by Henri Cartan. In extending Poincaré duality to manifolds that are not compact, the 'compact support' idea enters naturally on one side of the duality; see for example Alexander–Spanier cohomology.

Bredon, Sheaf Theory (2nd edition, 1997) gives these definitions. A family of closed subsets of is a family of supports, if it is down-closed and closed under finite union. Its extent is the union over A paracompactifying family of supports that satisfies further that any in is, with the subspace topology, a paracompact space; and has some in which is a neighbourhood. If is a locally compact space, assumed Hausdorff the family of all compact subsets satisfies the further conditions, making it paracompactifying.

See also

Citations

    1. Folland, Gerald B. (1999). Real Analysis, 2nd ed. New York: John Wiley. p. 132.
    2. Hörmander, Lars (1990). Linear Partial Differential Equations I, 2nd ed. Berlin: Springer-Verlag. p. 14.
    3. Pascucci, Andrea (2011). PDE and Martingale Methods in Option Pricing. Bocconi & Springer Series. Berlin: Springer-Verlag. p. 678. doi:10.1007/978-88-470-1781-8. ISBN   978-88-470-1780-1.
    4. Rudin, Walter (1987). Real and Complex Analysis, 3rd ed. New York: McGraw-Hill. p. 38.
    5. 1 2 Lieb, Elliott; Loss, Michael (2001). Analysis. Graduate Studies in Mathematics. Vol. 14 (2nd ed.). American Mathematical Society. p. 13. ISBN   978-0821827833.
    6. In a similar way, one uses the essential supremum of a measurable function instead of its supremum.
    7. Tomasz, Kaczynski (2004). Computational homology. Mischaikow, Konstantin Michael,, Mrozek, Marian. New York: Springer. p. 445. ISBN   9780387215976. OCLC   55897585.
    8. Taboga, Marco. "Support of a random variable". statlect.com. Retrieved 29 November 2017.
    9. Edwards, A. W. F. (1992). Likelihood (Expanded ed.). Baltimore: Johns Hopkins University Press. pp. 31–34. ISBN   0-8018-4443-6.

    Related Research Articles

    In mathematics, any vector space has a corresponding dual vector space consisting of all linear forms on together with the vector space structure of pointwise addition and scalar multiplication by constants.

    This is a glossary of some terms used in the branch of mathematics known as topology. Although there is no absolute distinction between different areas of topology, the focus here is on general topology. The following definitions are also fundamental to algebraic topology, differential topology and geometric topology.

    In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a topological vector space with respect to its continuous dual. The remainder of this article will deal with this case, which is one of the concepts of functional analysis.

    In mathematics, a topological vector space is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is also a topological space with the property that the vector space operations are also continuous functions. Such a topology is called a vector topology and every topological vector space has a uniform topological structure, allowing a notion of uniform convergence and completeness. Some authors also require that the space is a Hausdorff space. One of the most widely studied categories of TVSs are locally convex topological vector spaces. This article focuses on TVSs that are not necessarily locally convex. Banach spaces, Hilbert spaces and Sobolev spaces are other well-known examples of TVSs.

    In geometry, topology, and related branches of mathematics, a closed set is a set whose complement is an open set. In a topological space, a closed set can be defined as a set which contains all its limit points. In a complete metric space, a closed set is a set which is closed under the limit operation. This should not be confused with a closed manifold.

    In mathematics, a paracompact space is a topological space in which every open cover has an open refinement that is locally finite. These spaces were introduced by Dieudonné (1944). Every compact space is paracompact. Every paracompact Hausdorff space is normal, and a Hausdorff space is paracompact if and only if it admits partitions of unity subordinate to any open cover. Sometimes paracompact spaces are defined so as to always be Hausdorff.

    In mathematics, a partition of unity of a topological space is a set of continuous functions from to the unit interval [0,1] such that for every point :

    Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

    In mathematics, the annihilator of a subset S of a module over a ring is the ideal formed by the elements of the ring that give always zero when multiplied by each element of S.

    In mathematical analysis, a function of bounded variation, also known as BV function, is a real-valued function whose total variation is bounded (finite): the graph of a function having this property is well behaved in a precise sense. For a continuous function of a single variable, being of bounded variation means that the distance along the direction of the y-axis, neglecting the contribution of motion along x-axis, traveled by a point moving along the graph has a finite value. For a continuous function of several variables, the meaning of the definition is the same, except for the fact that the continuous path to be considered cannot be the whole graph of the given function, but can be every intersection of the graph itself with a hyperplane parallel to a fixed x-axis and to the y-axis.

    In mathematics, the Sierpiński space is a finite topological space with two points, only one of which is closed. It is the smallest example of a topological space which is neither trivial nor discrete. It is named after Wacław Sierpiński.

    In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vector spaces whose topology is generated by translations of balanced, absorbent, convex sets. Alternatively they can be defined as a vector space with a family of seminorms, and a topology can be defined in terms of that family. Although in general such spaces are not necessarily normable, the existence of a convex local base for the zero vector is strong enough for the Hahn–Banach theorem to hold, yielding a sufficiently rich theory of continuous linear functionals.

    <span class="mw-page-title-main">Bump function</span> Smooth and compactly supported function

    In mathematics, a bump function is a function on a Euclidean space which is both smooth and compactly supported. The set of all bump functions with domain forms a vector space, denoted or The dual space of this space endowed with a suitable topology is the space of distributions.

    In mathematics, hyperfunctions are generalizations of functions, as a 'jump' from one holomorphic function to another at a boundary, and can be thought of informally as distributions of infinite order. Hyperfunctions were introduced by Mikio Sato in 1958 in Japanese,, building upon earlier work by Laurent Schwartz, Grothendieck and others.

    A multiresolution analysis (MRA) or multiscale approximation (MSA) is the design method of most of the practically relevant discrete wavelet transforms (DWT) and the justification for the algorithm of the fast wavelet transform (FWT). It was introduced in this context in 1988/89 by Stephane Mallat and Yves Meyer and has predecessors in the microlocal analysis in the theory of differential equations and the pyramid methods of image processing as introduced in 1981/83 by Peter J. Burt, Edward H. Adelson and James L. Crowley.

    In mathematical analysis, the Kakutani fixed-point theorem is a fixed-point theorem for set-valued functions. It provides sufficient conditions for a set-valued function defined on a convex, compact subset of a Euclidean space to have a fixed point, i.e. a point which is mapped to a set containing it. The Kakutani fixed point theorem is a generalization of the Brouwer fixed point theorem. The Brouwer fixed point theorem is a fundamental result in topology which proves the existence of fixed points for continuous functions defined on compact, convex subsets of Euclidean spaces. Kakutani's theorem extends this to set-valued functions.

    In mathematics, the support of a measure on a measurable topological space is a precise notion of where in the space the measure "lives". It is defined to be the largest (closed) subset of for which every open neighbourhood of every point of the set has positive measure.

    In functional analysis and related areas of mathematics, a complete topological vector space is a topological vector space (TVS) with the property that whenever points get progressively closer to each other, then there exists some point towards which they all get closer. The notion of "points that get progressively closer" is made rigorous by Cauchy nets or Cauchy filters, which are generalizations of Cauchy sequences, while "point towards which they all get closer" means that this Cauchy net or filter converges to The notion of completeness for TVSs uses the theory of uniform spaces as a framework to generalize the notion of completeness for metric spaces. But unlike metric-completeness, TVS-completeness does not depend on any metric and is defined for all TVSs, including those that are not metrizable or Hausdorff.

    In the mathematical discipline of functional analysis, a differentiable vector-valued function from Euclidean space is a differentiable function valued in a topological vector space (TVS) whose domains is a subset of some finite-dimensional Euclidean space. It is possible to generalize the notion of derivative to functions whose domain and codomain are subsets of arbitrary topological vector spaces (TVSs) in multiple ways. But when the domain of a TVS-valued function is a subset of a finite-dimensional Euclidean space then many of these notions become logically equivalent resulting in a much more limited number of generalizations of the derivative and additionally, differentiability is also more well-behaved compared to the general case. This article presents the theory of -times continuously differentiable functions on an open subset of Euclidean space , which is an important special case of differentiation between arbitrary TVSs. This importance stems partially from the fact that every finite-dimensional vector subspace of a Hausdorff topological vector space is TVS isomorphic to Euclidean space so that, for example, this special case can be applied to any function whose domain is an arbitrary Hausdorff TVS by restricting it to finite-dimensional vector subspaces.

    In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued functions on a non-empty open subset that have compact support. The space of all test functions, denoted by is endowed with a certain topology, called the canonical LF-topology, that makes into a complete Hausdorff locally convex TVS. The strong dual space of is called the space of distributions on and is denoted by where the "" subscript indicates that the continuous dual space of denoted by is endowed with the strong dual topology.

    References