Quadratic variation

Last updated

In mathematics, quadratic variation is used in the analysis of stochastic processes such as Brownian motion and other martingales. Quadratic variation is just one kind of variation of a process.

Contents

Definition

Suppose that is a real-valued stochastic process defined on a probability space and with time index ranging over the non-negative real numbers. Its quadratic variation is the process, written as , defined as

where ranges over partitions of the interval and the norm of the partition is the mesh. This limit, if it exists, is defined using convergence in probability. Note that a process may be of finite quadratic variation in the sense of the definition given here and its paths be nonetheless almost surely of infinite 1-variation for every in the classical sense of taking the supremum of the sum over all partitions; this is in particular the case for Brownian motion.

More generally, the covariation (or cross-variance) of two processes and is

The covariation may be written in terms of the quadratic variation by the polarization identity:

Notation: the quadratic variation is also notated as or .

Finite variation processes

A process is said to have finite variation if it has bounded variation over every finite time interval (with probability 1). Such processes are very common including, in particular, all continuously differentiable functions. The quadratic variation exists for all continuous finite variation processes, and is zero.

This statement can be generalized to non-continuous processes. Any càdlàg finite variation process has quadratic variation equal to the sum of the squares of the jumps of . To state this more precisely, the left limit of with respect to is denoted by , and the jump of at time can be written as . Then, the quadratic variation is given by

The proof that continuous finite variation processes have zero quadratic variation follows from the following inequality. Here, is a partition of the interval , and is the variation of over .

By the continuity of , this vanishes in the limit as goes to zero.

Itô processes

The quadratic variation of a standard Brownian motion exists, and is given by , however the limit in the definition is meant in the sense and not pathwise. This generalizes to Itô processes that, by definition, can be expressed in terms of Itô integrals

where is a Brownian motion. Any such process has quadratic variation given by

Semimartingales

Quadratic variations and covariations of all semimartingales can be shown to exist. They form an important part of the theory of stochastic calculus, appearing in Itô's lemma, which is the generalization of the chain rule to the Itô integral. The quadratic covariation also appears in the integration by parts formula

which can be used to compute .

Alternatively this can be written as a stochastic differential equation:

where

Martingales

All càdlàg martingales, and local martingales have well defined quadratic variation, which follows from the fact that such processes are examples of semimartingales. It can be shown that the quadratic variation of a general locally square integrable martingale is the unique right-continuous and increasing process starting at zero, with jumps and such that is a local martingale. A proof of existence of (without using stochastic calculus) is given in Karandikar–Rao (2014).

A useful result for square integrable martingales is the Itô isometry, which can be used to calculate the variance of Itô integrals,

This result holds whenever is a càdlàg square integrable martingale and is a bounded predictable process, and is often used in the construction of the Itô integral.

Another important result is the Burkholder–Davis–Gundy inequality. This gives bounds for the maximum of a martingale in terms of the quadratic variation. For a local martingale starting at zero, with maximum denoted by , and any real number , the inequality is

Here, are constants depending on the choice of , but not depending on the martingale or time used. If is a continuous local martingale, then the Burkholder–Davis–Gundy inequality holds for any .

An alternative process, the predictable quadratic variation is sometimes used for locally square integrable martingales. This is written as , and is defined to be the unique right-continuous and increasing predictable process starting at zero such that is a local martingale. Its existence follows from the Doob–Meyer decomposition theorem and, for continuous local martingales, it is the same as the quadratic variation.

See also

Related Research Articles

Wiener process Stochastic process generalizing Brownian motion

In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. It is often also called Brownian motion due to its historical connection with the physical process of the same name originally observed by Scottish botanist Robert Brown. It is one of the best known Lévy processes and occurs frequently in pure and applied mathematics, economics, quantitative finance, evolutionary biology, and physics.

In mathematics, Itô's lemma is an identity used in Itô calculus to find the differential of a time-dependent function of a stochastic process. It serves as the stochastic calculus counterpart of the chain rule. It can be heuristically derived by forming the Taylor series expansion of the function up to its second derivatives and retaining terms up to first order in the time increment and second order in the Wiener process increment. The lemma is widely employed in mathematical finance, and its best known application is in the derivation of the Black–Scholes equation for option values.

Stochastic calculus is a branch of mathematics that operates on stochastic processes. It allows a consistent theory of integration to be defined for integrals of stochastic processes with respect to stochastic processes. This field was created and started by the Japanese mathematician Kiyoshi Itô during World War II.

Martingale (probability theory) Model in probability theory

In probability theory, a martingale is a sequence of random variables for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values.

Itô calculus Calculus of stochastic differential equations

Itô calculus, named after Kiyosi Itô, extends the methods of calculus to stochastic processes such as Brownian motion. It has important applications in mathematical finance and stochastic differential equations.

In stochastic processes, the Stratonovich integral is a stochastic integral, the most common alternative to the Itô integral. Although the Itô integral is the usual choice in applied mathematics, the Stratonovich integral is frequently used in physics.

In mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property. Every martingale is a local martingale; every bounded local martingale is a martingale; in particular, every local martingale that is bounded from below is a supermartingale, and every local martingale that is bounded from above is a submartingale; however, in general a local martingale is not a martingale, because its expectation can be distorted by large values of small probability. In particular, a driftless diffusion process is a local martingale, but not necessarily a martingale.

In mathematics, Doob's martingale inequality, also known as Kolmogorov’s submartingale inequality is a result in the study of stochastic processes. It gives a bound on the probability that a submartingale exceeds any given value over a given interval of time. As the name suggests, the result is usually given in the case that the process is a martingale, but the result is also valid for submartingales.

In mathematical analysis, the Russo–Vallois integral is an extension to stochastic processes of the classical Riemann–Stieltjes integral

In mathematics, uniform integrability is an important concept in real analysis, functional analysis and measure theory, and plays a vital role in the theory of martingales.

In probability theory, a real valued stochastic process X is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be defined.

In mathematics – specifically, in stochastic analysis – an Itô diffusion is a solution to a specific type of stochastic differential equation. That equation is similar to the Langevin equation used in physics to describe the Brownian motion of a particle subjected to a potential in a viscous fluid. Itô diffusions are named after the Japanese mathematician Kiyosi Itô.

In mathematics – specifically, in the theory of stochastic processes – Doob's martingale convergence theorems are a collection of results on the limits of supermartingales, named after the American mathematician Joseph L. Doob. Informally, the martingale convergence theorem typically refers to the result that any supermartingale satisfying a certain boundedness condition must converge. One may think of supermartingales as the random variable analogues of non-increasing sequences; from this perspective, the martingale convergence theorem is a random variable analogue of the monotone convergence theorem, which states that any bounded monotone sequence converges. There are symmetric results for submartingales, which are analogous to non-decreasing sequences.

In stochastic calculus, the Doléans-Dade exponential or stochastic exponential of a semimartingale X is the unique strong solution of the stochastic differential equation

Brownian excursion

In probability theory a Brownian excursion process is a stochastic process that is closely related to a Wiener process. Realisations of Brownian excursion processes are essentially just realizations of a Wiener process selected to satisfy certain conditions. In particular, a Brownian excursion process is a Wiener process conditioned to be positive and to take the value 0 at time 1. Alternatively, it is a Brownian bridge process conditioned to be positive. BEPs are important because, among other reasons, they naturally arise as the limit process of a number of conditional functional central limit theorems.

In stochastic calculus, the Kunita–Watanabe inequality is a generalization of the Cauchy–Schwarz inequality to integrals of stochastic processes. It was first obtained by Hiroshi Kunita and Shinzo Watanabe and plays a fundamental role in their extension of Ito's stochastic integral to square-integrable martingales.

In stochastic analysis, a rough path is a generalization of the notion of smooth path allowing to construct a robust solution theory for controlled differential equations driven by classically irregular signals, for example a Wiener process. The theory was developed in the 1990s by Terry Lyons. Several accounts of the theory are available.

In mathematical analysis, p-variation is a collection of seminorms on functions from an ordered set to a metric space, indexed by a real number . p-variation is a measure of the regularity or smoothness of a function. Specifically, if , where is a metric space and I a totally ordered set, its p-variation is

The separation principle is one of the fundamental principles of stochastic control theory, which states that the problems of optimal control and state estimation can be decoupled under certain conditions. In its most basic formulation it deals with a linear stochastic system

In stochastic calculus, stochastic logarithm of a semimartingale such that and is the semimartingale given by

References