Wiener process

Last updated

Wiener Process
Probability density function
Wiener process with sigma.svg
Mean
Variance
A single realization of a one-dimensional Wiener process Wiener process zoom.png
A single realization of a one-dimensional Wiener process
A single realization of a three-dimensional Wiener process WienerProcess3D.svg
A single realization of a three-dimensional Wiener process

In mathematics, the Wiener process is a real-valued continuous-time stochastic process named in honor of American mathematician Norbert Wiener for his investigations on the mathematical properties of the one-dimensional Brownian motion. [1] It is often also called Brownian motion due to its historical connection with the physical process of the same name originally observed by Scottish botanist Robert Brown. It is one of the best known Lévy processes (càdlàg stochastic processes with stationary independent increments) and occurs frequently in pure and applied mathematics, economics, quantitative finance, evolutionary biology, and physics.

Contents

The Wiener process plays an important role in both pure and applied mathematics. In pure mathematics, the Wiener process gave rise to the study of continuous time martingales. It is a key process in terms of which more complicated stochastic processes can be described. As such, it plays a vital role in stochastic calculus, diffusion processes and even potential theory. It is the driving process of Schramm–Loewner evolution. In applied mathematics, the Wiener process is used to represent the integral of a white noise Gaussian process, and so is useful as a model of noise in electronics engineering (see Brownian noise), instrument errors in filtering theory and disturbances in control theory.

The Wiener process has applications throughout the mathematical sciences. In physics it is used to study Brownian motion, the diffusion of minute particles suspended in fluid, and other types of diffusion via the Fokker–Planck and Langevin equations. It also forms the basis for the rigorous path integral formulation of quantum mechanics (by the Feynman–Kac formula, a solution to the Schrödinger equation can be represented in terms of the Wiener process) and the study of eternal inflation in physical cosmology. It is also prominent in the mathematical theory of finance, in particular the Black–Scholes option pricing model.

Characterisations of the Wiener process

The Wiener process is characterised by the following properties: [2]

  1. almost surely
  2. has independent increments: for every the future increments are independent of the past values ,
  3. has Gaussian increments: is normally distributed with mean and variance ,
  4. has almost surely continuous paths: is almost surely continuous in .

That the process has independent increments means that if 0 ≤ s1 < t1s2 < t2 then Wt1Ws1 and Wt2Ws2 are independent random variables, and the similar condition holds for n increments.

An alternative characterisation of the Wiener process is the so-called Lévy characterisation that says that the Wiener process is an almost surely continuous martingale with W0 = 0 and quadratic variation [Wt, Wt] = t (which means that Wt2t is also a martingale).

A third characterisation is that the Wiener process has a spectral representation as a sine series whose coefficients are independent N(0, 1) random variables. This representation can be obtained using the Karhunen–Loève theorem.

Another characterisation of a Wiener process is the definite integral (from time zero to time t) of a zero mean, unit variance, delta correlated ("white") Gaussian process. [3]

The Wiener process can be constructed as the scaling limit of a random walk, or other discrete-time stochastic processes with stationary independent increments. This is known as Donsker's theorem. Like the random walk, the Wiener process is recurrent in one or two dimensions (meaning that it returns almost surely to any fixed neighborhood of the origin infinitely often) whereas it is not recurrent in dimensions three and higher (where a multidimensional Wiener process is a process such that its coordinates are independent Wiener processes). [4] Unlike the random walk, it is scale invariant, meaning that is a Wiener process for any nonzero constant α. The Wiener measure is the probability law on the space of continuous functions g, with g(0) = 0, induced by the Wiener process. An integral based on Wiener measure may be called a Wiener integral.

Wiener process as a limit of random walk

Let be i.i.d. random variables with mean 0 and variance 1. For each n, define a continuous time stochastic process This is a random step function. Increments of are independent because the are independent. For large n, is close to by the central limit theorem. Donsker's theorem asserts that as , approaches a Wiener process, which explains the ubiquity of Brownian motion. [5]

Properties of a one-dimensional Wiener process

Five sampled processes, with expected standard deviation in gray. Wiener-process-5traces.svg
Five sampled processes, with expected standard deviation in gray.

Basic properties

The unconditional probability density function follows a normal distribution with mean = 0 and variance = t, at a fixed time t:

The expectation is zero:

The variance, using the computational formula, is t:

These results follow immediately from the definition that increments have a normal distribution, centered at zero. Thus

Covariance and correlation

The covariance and correlation (where ):

These results follow from the definition that non-overlapping increments are independent, of which only the property that they are uncorrelated is used. Suppose that .

Substituting we arrive at:

Since and are independent,

Thus

A corollary useful for simulation is that we can write, for t1 < t2: where Z is an independent standard normal variable.

Wiener representation

Wiener (1923) also gave a representation of a Brownian path in terms of a random Fourier series. If are independent Gaussian variables with mean zero and variance one, then and represent a Brownian motion on . The scaled process is a Brownian motion on (cf. Karhunen–Loève theorem).

Running maximum

The joint distribution of the running maximum and Wt is

To get the unconditional distribution of , integrate over −∞ < wm:

the probability density function of a Half-normal distribution. The expectation [6] is

If at time the Wiener process has a known value , it is possible to calculate the conditional probability distribution of the maximum in interval (cf. Probability distribution of extreme points of a Wiener stochastic process). The cumulative probability distribution function of the maximum value, conditioned by the known value , is:

Self-similarity

A demonstration of Brownian scaling, showing
V
t
=
(
1
/
c
)
W
c
t
{\displaystyle V_{t}=(1/{\sqrt {c}})W_{ct}}
for decreasing c. Note that the average features of the function do not change while zooming in, and note that it zooms in quadratically faster horizontally than vertically. Wiener process animated.gif
A demonstration of Brownian scaling, showing for decreasing c. Note that the average features of the function do not change while zooming in, and note that it zooms in quadratically faster horizontally than vertically.

Brownian scaling

For every c > 0 the process is another Wiener process.

Time reversal

The process for 0 ≤ t ≤ 1 is distributed like Wt for 0 ≤ t ≤ 1.

Time inversion

The process is another Wiener process.

Projective invariance

Consider a Wiener process , , conditioned so that (which holds almost surely) and as usual . Then the following are all Wiener processes ( Takenaka 1988 ): Thus the Wiener process is invariant under the projective group PSL(2,R), being invariant under the generators of the group. The action of an element is which defines a group action, in the sense that

Conformal invariance in two dimensions

Let be a two-dimensional Wiener process, regarded as a complex-valued process with . Let be an open set containing 0, and be associated Markov time: If is a holomorphic function which is not constant, such that , then is a time-changed Wiener process in ( Lawler 2005 ). More precisely, the process is Wiener in with the Markov time where

A class of Brownian martingales

If a polynomial p(x, t) satisfies the partial differential equation then the stochastic process is a martingale.

Example: is a martingale, which shows that the quadratic variation of W on [0, t] is equal to t. It follows that the expected time of first exit of W from (−c, c) is equal to c2.

More generally, for every polynomial p(x, t) the following stochastic process is a martingale: where a is the polynomial

Example: the process is a martingale, which shows that the quadratic variation of the martingale on [0, t] is equal to

About functions p(xa, t) more general than polynomials, see local martingales.

Some properties of sample paths

The set of all functions w with these properties is of full Wiener measure. That is, a path (sample function) of the Wiener process has all these properties almost surely.

Qualitative properties

  • For every ε > 0, the function w takes both (strictly) positive and (strictly) negative values on (0, ε).
  • The function w is continuous everywhere but differentiable nowhere (like the Weierstrass function).
  • For any , is almost surely not -Hölder continuous, and almost surely -Hölder continuous. [7]
  • Points of local maximum of the function w are a dense countable set; the maximum values are pairwise different; each local maximum is sharp in the following sense: if w has a local maximum at t then The same holds for local minima.
  • The function w has no points of local increase, that is, no t > 0 satisfies the following for some ε in (0, t): first, w(s) ≤ w(t) for all s in (t − ε, t), and second, w(s) ≥ w(t) for all s in (t, t + ε). (Local increase is a weaker condition than that w is increasing on (tε, t + ε).) The same holds for local decrease.
  • The function w is of unbounded variation on every interval.
  • The quadratic variation of w over [0,t] is t.
  • Zeros of the function w are a nowhere dense perfect set of Lebesgue measure 0 and Hausdorff dimension 1/2 (therefore, uncountable).

Quantitative properties

Law of the iterated logarithm

Modulus of continuity

Local modulus of continuity:

Global modulus of continuity (Lévy):

Dimension doubling theorem

The dimension doubling theorems say that the Hausdorff dimension of a set under a Brownian motion doubles almost surely.

Local time

The image of the Lebesgue measure on [0, t] under the map w (the pushforward measure) has a density Lt. Thus, for a wide class of functions f (namely: all continuous functions; all locally integrable functions; all non-negative measurable functions). The density Lt is (more exactly, can and will be chosen to be) continuous. The number Lt(x) is called the local time at x of w on [0, t]. It is strictly positive for all x of the interval (a, b) where a and b are the least and the greatest value of w on [0, t], respectively. (For x outside this interval the local time evidently vanishes.) Treated as a function of two variables x and t, the local time is still continuous. Treated as a function of t (while x is fixed), the local time is a singular function corresponding to a nonatomic measure on the set of zeros of w.

These continuity properties are fairly non-trivial. Consider that the local time can also be defined (as the density of the pushforward measure) for a smooth function. Then, however, the density is discontinuous, unless the given function is monotone. In other words, there is a conflict between good behavior of a function and good behavior of its local time. In this sense, the continuity of the local time of the Wiener process is another manifestation of non-smoothness of the trajectory.

Information rate

The information rate of the Wiener process with respect to the squared error distance, i.e. its quadratic rate-distortion function, is given by [8] Therefore, it is impossible to encode using a binary code of less than bits and recover it with expected mean squared error less than . On the other hand, for any , there exists large enough and a binary code of no more than distinct elements such that the expected mean squared error in recovering from this code is at most .

In many cases, it is impossible to encode the Wiener process without sampling it first. When the Wiener process is sampled at intervals before applying a binary code to represent these samples, the optimal trade-off between code rate and expected mean square error (in estimating the continuous-time Wiener process) follows the parametric representation [9] where and . In particular, is the mean squared error associated only with the sampling operation (without encoding).

Wiener processes with drift (
@media screen{html.skin-theme-clientpref-night .mw-parser-output div:not(.notheme)>.tmp-color,html.skin-theme-clientpref-night .mw-parser-output p>.tmp-color,html.skin-theme-clientpref-night .mw-parser-output table:not(.notheme) .tmp-color{color:inherit!important}}@media screen and (prefers-color-scheme:dark){html.skin-theme-clientpref-os .mw-parser-output div:not(.notheme)>.tmp-color,html.skin-theme-clientpref-os .mw-parser-output p>.tmp-color,html.skin-theme-clientpref-os .mw-parser-output table:not(.notheme) .tmp-color{color:inherit!important}}
blue) and without drift (
red). DriftedWienerProcess1D.svg
Wiener processes with drift (blue) and without drift (red).
2D Wiener processes with drift (
blue) and without drift (
red). ItoWienerProcess2D.svg
2D Wiener processes with drift (blue) and without drift (red).
The generator of a Brownian motion is
.mw-parser-output .frac{white-space:nowrap}.mw-parser-output .frac .num,.mw-parser-output .frac .den{font-size:80%;line-height:0;vertical-align:super}.mw-parser-output .frac .den{vertical-align:sub}.mw-parser-output .sr-only{border:0;clip:rect(0,0,0,0);clip-path:polygon(0px 0px,0px 0px,0px 0px);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}
1/2 times the Laplace-Beltrami operator. The image above is of the Brownian motion on a special manifold: the surface of a sphere. BMonSphere.jpg
The generator of a Brownian motion is 12 times the Laplace–Beltrami operator. The image above is of the Brownian motion on a special manifold: the surface of a sphere.

The stochastic process defined by is called a Wiener process with drift μ and infinitesimal variance σ2. These processes exhaust continuous Lévy processes, which means that they are the only continuous Lévy processes, as a consequence of the Lévy–Khintchine representation.

Two random processes on the time interval [0, 1] appear, roughly speaking, when conditioning the Wiener process to vanish on both ends of [0,1]. With no further conditioning, the process takes both positive and negative values on [0, 1] and is called Brownian bridge. Conditioned also to stay positive on (0, 1), the process is called Brownian excursion. [10] In both cases a rigorous treatment involves a limiting procedure, since the formula P(A|B) = P(AB)/P(B) does not apply when P(B) = 0.

A geometric Brownian motion can be written

It is a stochastic process which is used to model processes that can never take on negative values, such as the value of stocks.

The stochastic process is distributed like the Ornstein–Uhlenbeck process with parameters , , and .

The time of hitting a single point x > 0 by the Wiener process is a random variable with the Lévy distribution. The family of these random variables (indexed by all positive numbers x) is a left-continuous modification of a Lévy process. The right-continuous modification of this process is given by times of first exit from closed intervals [0, x].

The local time L = (Lxt)xR, t ≥ 0 of a Brownian motion describes the time that the process spends at the point x. Formally where δ is the Dirac delta function. The behaviour of the local time is characterised by Ray–Knight theorems.

Brownian martingales

Let A be an event related to the Wiener process (more formally: a set, measurable with respect to the Wiener measure, in the space of functions), and Xt the conditional probability of A given the Wiener process on the time interval [0, t] (more formally: the Wiener measure of the set of trajectories whose concatenation with the given partial trajectory on [0, t] belongs to A). Then the process Xt is a continuous martingale. Its martingale property follows immediately from the definitions, but its continuity is a very special fact – a special case of a general theorem stating that all Brownian martingales are continuous. A Brownian martingale is, by definition, a martingale adapted to the Brownian filtration; and the Brownian filtration is, by definition, the filtration generated by the Wiener process.

Integrated Brownian motion

The time-integral of the Wiener process is called integrated Brownian motion or integrated Wiener process. It arises in many applications and can be shown to have the distribution N(0, t3/3), [11] calculated using the fact that the covariance of the Wiener process is . [12]

For the general case of the process defined by Then, for , In fact, is always a zero mean normal random variable. This allows for simulation of given by taking where Z is a standard normal variable and The case of corresponds to . All these results can be seen as direct consequences of Itô isometry. The n-times-integrated Wiener process is a zero-mean normal variable with variance . This is given by the Cauchy formula for repeated integration.

Time change

Every continuous martingale (starting at the origin) is a time changed Wiener process.

Example: 2Wt = V(4t) where V is another Wiener process (different from W but distributed like W).

Example. where and V is another Wiener process.

In general, if M is a continuous martingale then where A(t) is the quadratic variation of M on [0, t], and V is a Wiener process.

Corollary. (See also Doob's martingale convergence theorems) Let Mt be a continuous martingale, and

Then only the following two cases are possible: other cases (such as   etc.) are of probability 0.

Especially, a nonnegative continuous martingale has a finite limit (as t → ∞) almost surely.

All stated (in this subsection) for martingales holds also for local martingales.

Change of measure

A wide class of continuous semimartingales (especially, of diffusion processes) is related to the Wiener process via a combination of time change and change of measure.

Using this fact, the qualitative properties stated above for the Wiener process can be generalized to a wide class of continuous semimartingales. [13] [14]

Complex-valued Wiener process

The complex-valued Wiener process may be defined as a complex-valued random process of the form where and are independent Wiener processes (real-valued). In other words, it is the 2-dimensional Wiener process, where we identify with . [15]

Self-similarity

Brownian scaling, time reversal, time inversion: the same as in the real-valued case.

Rotation invariance: for every complex number such that the process is another complex-valued Wiener process.

Time change

If is an entire function then the process is a time-changed complex-valued Wiener process.

Example: where and is another complex-valued Wiener process.

In contrast to the real-valued case, a complex-valued martingale is generally not a time-changed complex-valued Wiener process. For example, the martingale is not (here and are independent Wiener processes, as before).

Brownian sheet

The Brownian sheet is a multiparamateric generalization. The definition varies from authors, some define the Brownian sheet to have specifically a two-dimensional time parameter while others define it for general dimensions.

See also

Notes

  1. N.Wiener Collected Works vol.1
  2. Durrett, Rick (2019). "Brownian Motion". Probability: Theory and Examples (5th ed.). Cambridge University Press. ISBN   9781108591034.
  3. Huang, Steel T.; Cambanis, Stamatis (1978). "Stochastic and Multiple Wiener Integrals for Gaussian Processes". The Annals of Probability. 6 (4): 585–614. doi: 10.1214/aop/1176995480 . ISSN   0091-1798. JSTOR   2243125.
  4. "Pólya's Random Walk Constants". Wolfram Mathworld.
  5. Steven Lalley, Mathematical Finance 345 Lecture 5: Brownian Motion (2001)
  6. Shreve, Steven E (2008). Stochastic Calculus for Finance II: Continuous Time Models. Springer. p. 114. ISBN   978-0-387-40101-0.
  7. Mörters, Peter; Peres, Yuval; Schramm, Oded; Werner, Wendelin (2010). Brownian motion. Cambridge series in statistical and probabilistic mathematics. Cambridge: Cambridge University Press. p. 18. ISBN   978-0-521-76018-8.
  8. T. Berger, "Information rates of Wiener processes," in IEEE Transactions on Information Theory, vol. 16, no. 2, pp. 134-139, March 1970. doi: 10.1109/TIT.1970.1054423
  9. Kipnis, A., Goldsmith, A.J. and Eldar, Y.C., 2019. The distortion-rate function of sampled Wiener processes. IEEE Transactions on Information Theory, 65(1), pp.482-499.
  10. Vervaat, W. (1979). "A relation between Brownian bridge and Brownian excursion". Annals of Probability . 7 (1): 143–149. doi: 10.1214/aop/1176995155 . JSTOR   2242845.
  11. "Interview Questions VII: Integrated Brownian Motion – Quantopia". www.quantopia.net. Retrieved 2017-05-14.
  12. Forum, "Variance of integrated Wiener process", 2009.
  13. Revuz, D., & Yor, M. (1999). Continuous martingales and Brownian motion (Vol. 293). Springer.
  14. Doob, J. L. (1953). Stochastic processes (Vol. 101). Wiley: New York.
  15. Navarro-moreno, J.; Estudillo-martinez, M.D; Fernandez-alcala, R.M.; Ruiz-molina, J.C. (2009), "Estimation of Improper Complex-Valued Random Signals in Colored Noise by Using the Hilbert Space Theory", IEEE Transactions on Information Theory, 55 (6): 2859–2867, doi:10.1109/TIT.2009.2018329, S2CID   5911584

Related Research Articles

<span class="mw-page-title-main">Brownian motion</span> Random motion of particles suspended in a fluid

Brownian motion is the random motion of particles suspended in a medium.

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

<span class="mw-page-title-main">Geometric Brownian motion</span> Continuous stochastic process

A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.

<span class="mw-page-title-main">Girsanov theorem</span> Theorem on changes in stochastic processes

In probability theory, the Girsanov theorem tells how stochastic processes change under changes in measure. The theorem is especially important in the theory of financial mathematics as it tells how to convert from the physical measure, which describes the probability that an underlying instrument will take a particular value or values, to the risk-neutral measure which is a very useful tool for evaluating the value of derivatives on the underlying.

In the theory of stochastic processes, the Karhunen–Loève theorem, also known as the Kosambi–Karhunen–Loève theorem states that a stochastic process can be represented as an infinite linear combination of orthogonal functions, analogous to a Fourier series representation of a function on a bounded interval. The transformation is also known as Hotelling transform and eigenvector transform, and is closely related to principal component analysis (PCA) technique widely used in image processing and in data analysis in many fields.

In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, Shinzo Watanabe, I. Shigekawa, and so on finally completed the foundations.

In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with independent, stationary increments: it represents the motion of a point whose successive displacements are random, in which displacements in pairwise disjoint time intervals are independent, and displacements in different time intervals of the same length have identical probability distributions. A Lévy process may thus be viewed as the continuous-time analog of a random walk.

<span class="mw-page-title-main">Lévy distribution</span> Probability distribution

In probability theory and statistics, the Lévy distribution, named after Paul Lévy, is a continuous probability distribution for a non-negative random variable. In spectroscopy, this distribution, with frequency as the dependent variable, is known as a van der Waals profile. It is a special case of the inverse-gamma distribution. It is a stable distribution.

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.

<span class="mw-page-title-main">Itô calculus</span> Calculus of stochastic differential equations

Itô calculus, named after Kiyosi Itô, extends the methods of calculus to stochastic processes such as Brownian motion. It has important applications in mathematical finance and stochastic differential equations.

<span class="mw-page-title-main">Brownian bridge</span> A process in physics

A Brownian bridge is a continuous-time gaussian process B(t) whose probability distribution is the conditional probability distribution of a standard Wiener process W(t) (a mathematical model of Brownian motion) subject to the condition (when standardized) that W(T) = 0, so that the process is pinned to the same value at both t = 0 and t = T. More precisely:

<span class="mw-page-title-main">Ornstein–Uhlenbeck process</span> Stochastic process modeling random walk with friction

In mathematics, the Ornstein–Uhlenbeck process is a stochastic process with applications in financial mathematics and the physical sciences. Its original application in physics was as a model for the velocity of a massive Brownian particle under the influence of friction. It is named after Leonard Ornstein and George Eugene Uhlenbeck.

In mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property. Every martingale is a local martingale; every bounded local martingale is a martingale; in particular, every local martingale that is bounded from below is a supermartingale, and every local martingale that is bounded from above is a submartingale; however, a local martingale is not in general a martingale, because its expectation can be distorted by large values of small probability. In particular, a driftless diffusion process is a local martingale, but not necessarily a martingale.

Stochastic approximation methods are a family of iterative methods typically used for root-finding problems or for optimization problems. The recursive update rules of stochastic approximation methods can be used, among other things, for solving linear systems when the collected data is corrupted by noise, or for approximating extreme values of functions which cannot be computed directly, but only estimated via noisy observations.

In probability theory, a real valued stochastic process X is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be defined.

In the stochastic calculus, Tanaka's formula for the Brownian motion states that

In mathematics, Schilder's theorem is a generalization of the Laplace method from integrals on to functional Wiener integration. The theorem is used in the large deviations theory of stochastic processes. Roughly speaking, out of Schilder's theorem one gets an estimate for the probability that a (scaled-down) sample path of Brownian motion will stray far from the mean path. This statement is made precise using rate functions. Schilder's theorem is generalized by the Freidlin–Wentzell theorem for Itō diffusions.

<span class="mw-page-title-main">Brownian excursion</span> Stochastic process

In probability theory a Brownian excursion process is a stochastic process that is closely related to a Wiener process. Realisations of Brownian excursion processes are essentially just realizations of a Wiener process selected to satisfy certain conditions. In particular, a Brownian excursion process is a Wiener process conditioned to be positive and to take the value 0 at time 1. Alternatively, it is a Brownian bridge process conditioned to be positive. BEPs are important because, among other reasons, they naturally arise as the limit process of a number of conditional functional central limit theorems.

In probability theory, a branch of mathematics, white noise analysis, otherwise known as Hida calculus, is a framework for infinite-dimensional and stochastic calculus, based on the Gaussian white noise probability space, to be compared with Malliavin calculus based on the Wiener process. It was initiated by Takeyuki Hida in his 1975 Carleton Mathematical Lecture Notes.

In mathematics, stochastic analysis on manifolds or stochastic differential geometry is the study of stochastic analysis over smooth manifolds. It is therefore a synthesis of stochastic analysis and of differential geometry.

References