Continuous-time random walk

Last updated

In mathematics, a continuous-time random walk (CTRW) is a generalization of a random walk where the wandering particle waits for a random time between jumps. It is a stochastic jump process with arbitrary distributions of jump lengths and waiting times. [1] [2] [3] More generally it can be seen to be a special case of a Markov renewal process.

Contents

Motivation

CTRW was introduced by Montroll and Weiss [4] as a generalization of physical diffusion processes to effectively describe anomalous diffusion, i.e., the super- and sub-diffusive cases. An equivalent formulation of the CTRW is given by generalized master equations. [5] A connection between CTRWs and diffusion equations with fractional time derivatives has been established. [6] Similarly, time-space fractional diffusion equations can be considered as CTRWs with continuously distributed jumps or continuum approximations of CTRWs on lattices. [7]

Formulation

A simple formulation of a CTRW is to consider the stochastic process defined by

whose increments are iid random variables taking values in a domain and is the number of jumps in the interval . The probability for the process taking the value at time is then given by

Here is the probability for the process taking the value after jumps, and is the probability of having jumps after time .

Montroll–Weiss formula

We denote by the waiting time in between two jumps of and by its distribution. The Laplace transform of is defined by

Similarly, the characteristic function of the jump distribution is given by its Fourier transform:

One can show that the Laplace–Fourier transform of the probability is given by

The above is called the MontrollWeiss formula.

Examples

Related Research Articles

<span class="mw-page-title-main">Brownian motion</span> Random motion of particles suspended in a fluid

Brownian motion is the random motion of particles suspended in a medium.

In physics, a Langevin equation is a stochastic differential equation describing how a system evolves when subjected to a combination of deterministic and fluctuating ("random") forces. The dependent variables in a Langevin equation typically are collective (macroscopic) variables changing only slowly in comparison to the other (microscopic) variables of the system. The fast (microscopic) variables are responsible for the stochastic nature of the Langevin equation. One application is to Brownian motion, which models the fluctuating motion of a small particle in a fluid.

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

Fractional calculus is a branch of mathematical analysis that studies the several different possibilities of defining real number powers or complex number powers of the differentiation operator

Functional integration is a collection of results in mathematics and physics where the domain of an integral is no longer a region of space, but a space of functions. Functional integrals arise in probability, in the study of partial differential equations, and in the path integral approach to the quantum mechanics of particles and fields.

<span class="mw-page-title-main">Path integral formulation</span> Formulation of quantum mechanics

The path integral formulation is a description in quantum mechanics that generalizes the stationary action principle of classical mechanics. It replaces the classical notion of a single, unique classical trajectory for a system with a sum, or functional integral, over an infinity of quantum-mechanically possible trajectories to compute a quantum amplitude.

In physics, the S-matrix or scattering matrix relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).

The Feynman–Kac formula, named after Richard Feynman and Mark Kac, establishes a link between parabolic partial differential equations (PDEs) and stochastic processes. In 1947, when Kac and Feynman were both Cornell faculty, Kac attended a presentation of Feynman's and remarked that the two of them were working on the same thing from different directions. The Feynman–Kac formula resulted, which proves rigorously the real-valued case of Feynman's path integrals. The complex case, which occurs when a particle's spin is included, is still an open question.

Nondimensionalization is the partial or full removal of physical dimensions from an equation involving physical quantities by a suitable substitution of variables. This technique can simplify and parameterize problems where measured units are involved. It is closely related to dimensional analysis. In some physical systems, the term scaling is used interchangeably with nondimensionalization, in order to suggest that certain quantities are better measured relative to some appropriate unit. These units refer to quantities intrinsic to the system, rather than units such as SI units. Nondimensionalization is not the same as converting extensive quantities in an equation to intensive quantities, since the latter procedure results in variables that still carry units.

In physics and fluid mechanics, a Blasius boundary layer describes the steady two-dimensional laminar boundary layer that forms on a semi-infinite plate which is held parallel to a constant unidirectional flow. Falkner and Skan later generalized Blasius' solution to wedge flow, i.e. flows in which the plate is not parallel to the flow.

In mathematics of stochastic systems, the Runge–Kutta method is a technique for the approximate numerical solution of a stochastic differential equation. It is a generalisation of the Runge–Kutta method for ordinary differential equations to stochastic differential equations (SDEs). Importantly, the method does not involve knowing derivatives of the coefficient functions in the SDEs.

In probability theory, a real valued stochastic process X is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be defined.

In mathematics – specifically, in stochastic analysis – an Itô diffusion is a solution to a specific type of stochastic differential equation. That equation is similar to the Langevin equation used in physics to describe the Brownian motion of a particle subjected to a potential in a viscous fluid. Itô diffusions are named after the Japanese mathematician Kiyosi Itô.

In actuarial science and applied probability, ruin theory uses mathematical models to describe an insurer's vulnerability to insolvency/ruin. In such models key quantities of interest are the probability of ruin, distribution of surplus immediately prior to ruin and deficit at time of ruin.

Stochastic quantum mechanics is an interpretation of quantum mechanics. This interpretation is based on a reformulation of quantum mechancis in which the dynamics of all particles is governed by a stochastic differential equation. Thus, according to the stochastic interpretation, quantum particles follow well-defined random trajectories in space(time), similar to a Brownian motion.

<span class="mw-page-title-main">Heterogeneous random walk in one dimension</span>

In dynamics, probability, physics, chemistry and related fields, a heterogeneous random walk in one dimension is a random walk in a one dimensional interval with jumping rules that depend on the location of the random walker in the interval.

In quantum probability, the Belavkin equation, also known as Belavkin-Schrödinger equation, quantum filtering equation, stochastic master equation, is a quantum stochastic differential equation describing the dynamics of a quantum system undergoing observation in continuous time. It was derived and henceforth studied by Viacheslav Belavkin in 1988.

In stochastic processes, Kramers–Moyal expansion refers to a Taylor series expansion of the master equation, named after Hans Kramers and José Enrique Moyal. In many textbooks, the expansion is used only to derive the Fokker–Planck equation, and never used again. In general, continuous stochastic processes are essentially all Markovian, and so Fokker–Planck equations are sufficient for studying them. The higher-order Kramers–Moyal expansion only come into play when the process is jumpy. This usually means it is a Poisson-like process.

A partially linear model is a form of semiparametric model, since it contains parametric and nonparametric elements. Application of the least squares estimators is available to partially linear model, if the hypothesis of the known of nonparametric element is valid. Partially linear equations were first used in the analysis of the relationship between temperature and usage of electricity by Engle, Granger, Rice and Weiss (1986). Typical application of partially linear model in the field of Microeconomics is presented by Tripathi in the case of profitability of firm's production in 1997. Also, partially linear model applied successfully in some other academic field. In 1994, Zeger and Diggle introduced partially linear model into biometrics. In environmental science, Parda-Sanchez et al. used partially linear model to analysis collected data in 2000. So far, partially linear model was optimized in many other statistic methods. In 1988, Robinson applied Nadaraya-Waston kernel estimator to test the nonparametric element to build a least-squares estimator After that, in 1997, local linear method was found by Truong.

The redundancy principle in biology expresses the need of many copies of the same entity to fulfill a biological function. Examples are numerous: disproportionate numbers of spermatozoa during fertilization compared to one egg, large number of neurotransmitters released during neuronal communication compared to the number of receptors, large numbers of released calcium ions during transient in cells, and many more in molecular and cellular transduction or gene activation and cell signaling. This redundancy is particularly relevant when the sites of activation are physically separated from the initial position of the molecular messengers. The redundancy is often generated for the purpose of resolving the time constraint of fast-activating pathways. It can be expressed in terms of the theory of extreme statistics to determine its laws and quantify how the shortest paths are selected. The main goal is to estimate these large numbers from physical principles and mathematical derivations.

References

  1. Klages, Rainer; Radons, Guenther; Sokolov, Igor M. (2008-09-08). Anomalous Transport: Foundations and Applications. ISBN   9783527622986.
  2. Paul, Wolfgang; Baschnagel, Jörg (2013-07-11). Stochastic Processes: From Physics to Finance. Springer Science & Business Media. pp. 72–. ISBN   9783319003276 . Retrieved 25 July 2014.
  3. Slanina, Frantisek (2013-12-05). Essentials of Econophysics Modelling. OUP Oxford. pp. 89–. ISBN   9780191009075 . Retrieved 25 July 2014.
  4. Elliott W. Montroll; George H. Weiss (1965). "Random Walks on Lattices. II". J. Math. Phys. 6 (2): 167. Bibcode:1965JMP.....6..167M. doi:10.1063/1.1704269.
  5. . M. Kenkre; E. W. Montroll; M. F. Shlesinger (1973). "Generalized master equations for continuous-time random walks". Journal of Statistical Physics. 9 (1): 45–50. Bibcode:1973JSP.....9...45K. doi:10.1007/BF01016796.
  6. Hilfer, R.; Anton, L. (1995). "Fractional master equations and fractal time random walks". Phys. Rev. E. 51 (2): R848–R851. Bibcode:1995PhRvE..51..848H. doi:10.1103/PhysRevE.51.R848.
  7. Gorenflo, Rudolf; Mainardi, Francesco; Vivoli, Alessandro (2005). "Continuous-time random walk and parametric subordination in fractional diffusion". Chaos, Solitons & Fractals. 34 (1): 87–103. arXiv: cond-mat/0701126 . Bibcode:2007CSF....34...87G. doi:10.1016/j.chaos.2007.01.052.