Superprocess

Last updated • 5 min readFrom Wikipedia, The Free Encyclopedia

An -superprocess, , within mathematics probability theory is a stochastic process on that is usually constructed as a special limit of near-critical branching diffusions.

Contents

Informally, it can be seen as a branching process where each particle splits and dies at infinite rates, and evolves according to a diffusion equation, and we follow the rescaled population of particles, seen as a measure on .

Scaling limit of a discrete branching process

Simplest setting

Branching Brownian process for N=30 Branching Brownian process..svg
Branching Brownian process for N=30

For any integer , consider a branching Brownian process defined as follows:

The notation means should be interpreted as: at each time , the number of particles in a set is . In other words, is a measure-valued random process. [1]

Now, define a renormalized process:

Then the finite-dimensional distributions of converge as to those of a measure-valued random process , which is called a -superprocess, [1] with initial value , where and where is a Brownian motion (specifically, where is a measurable space, is a filtration, and under has the law of a Brownian motion started at ).

As will be clarified in the next section, encodes an underlying branching mechanism, and encodes the motion of the particles. Here, since is a Brownian motion, the resulting object is known as a Super-brownian motion. [1]

Generalization to (ξ, ϕ)-superprocesses

Our discrete branching system can be much more sophisticated, leading to a variety of superprocesses:

Add the following requirement that the expected number of offspring is bounded:

Define as above, and define the following crucial function:

Add the requirement, for all , that is Lipschitz continuous with respect to uniformly on , and that converges to some function as uniformly on .

Provided all of these conditions, the finite-dimensional distributions of converge to those of a measure-valued random process which is called a -superprocess, [1] with initial value .

Commentary on ϕ

Provided , that is, the number of branching events becomes infinite, the requirement that converges implies that, taking a Taylor expansion of , the expected number of offspring is close to 1, and therefore that the process is near-critical.

Generalization to Dawson-Watanabe superprocesses

The branching particle system can be further generalized as follows:

Then, under suitable hypotheses, the finite-dimensional distributions of converge to those of a measure-valued random process which is called a Dawson-Watanabesuperprocess, [1] with initial value .

Properties

A superprocess has a number of properties. It is a Markov process, and its Markov kernel verifies the branching property:

where is the convolution.A special class of superprocesses are -superprocesses, [2] with . A -superprocesses is defined on . Its branching mechanism is defined by its factorial moment generating function (the definition of a branching mechanism varies slightly among authors, some [1] use the definition of in the previous section, others [2] use the factorial moment generating function):

and the spatial motion of individual particles (noted in the previous section) is given by the -symmetric stable process with infinitesimal generator .

The case means is a standard Brownian motion and the -superprocess is called the super-Brownian motion.

One of the most important properties of superprocesses is that they are intimately connected with certain nonlinear partial differential equations. The simplest such equation is When the spatial motion (migration) is a diffusion process, one talks about a superdiffusion. The connection between superdiffusions and nonlinear PDE's is similar to the one between diffusions and linear PDE's.

Further resources

Related Research Articles

<span class="mw-page-title-main">Dirac delta function</span> Generalized function whose value is zero everywhere except at zero

In mathematical physics, the Dirac delta distribution, also known as the unit impulse, is a generalized function or distribution over the real numbers, whose value is zero everywhere except at zero, and whose integral over the entire real line is equal to one.

<span class="mw-page-title-main">Fourier transform</span> Mathematical transform that expresses a function of time as a function of frequency

In physics and mathematics, the Fourier transform (FT) is a transform that converts a function into a form that describes the frequencies present in the original function. The output of the transform is a complex-valued function of frequency. The term Fourier transform refers to both this complex-valued function and the mathematical operation. When a distinction needs to be made the Fourier transform is sometimes called the frequency domain representation of the original function. The Fourier transform is analogous to decomposing the sound of a musical chord into terms of the intensity of its constituent pitches.

<span class="mw-page-title-main">Fokker–Planck equation</span> Partial differential equation

In statistical mechanics and information theory, the Fokker–Planck equation is a partial differential equation that describes the time evolution of the probability density function of the velocity of a particle under the influence of drag forces and random forces, as in Brownian motion. The equation can be generalized to other observables as well. The Fokker-Planck equation has multiple applications in information theory, graph theory, data science, finance, economics etc.

<span class="mw-page-title-main">Girsanov theorem</span>

In probability theory, the Girsanov theorem tells how stochastic processes change under changes in measure. The theorem is especially important in the theory of financial mathematics as it tells how to convert from the physical measure which describes the probability that an underlying instrument will take a particular value or values to the risk-neutral measure which is a very useful tool for evaluating the value of derivatives on the underlying.

<span class="mw-page-title-main">Radon transform</span> Integral transform

In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line. The transform was introduced in 1917 by Johann Radon, who also provided a formula for the inverse transform. Radon further included formulas for the transform in three dimensions, in which the integral is taken over planes. It was later generalized to higher-dimensional Euclidean spaces and more broadly in the context of integral geometry. The complex analogue of the Radon transform is known as the Penrose transform. The Radon transform is widely applicable to tomography, the creation of an image from the projection data associated with cross-sectional scans of an object.

<span class="mw-page-title-main">Hamilton–Jacobi equation</span> A reformulation of Newtons laws of motion using the calculus of variations

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In probability theory, a Lévy process, named after the French mathematician Paul Lévy, is a stochastic process with independent, stationary increments: it represents the motion of a point whose successive displacements are random, in which displacements in pairwise disjoint time intervals are independent, and displacements in different time intervals of the same length have identical probability distributions. A Lévy process may thus be viewed as the continuous-time analog of a random walk.

<span class="mw-page-title-main">Mixing (mathematics)</span>

In mathematics, mixing is an abstract concept originating from physics: the attempt to describe the irreversible thermodynamic process of mixing in the everyday world: e.g. mixing paint, mixing drinks, industrial mixing.

<span class="mw-page-title-main">Lévy distribution</span>

In probability theory and statistics, the Lévy distribution, named after Paul Lévy, is a continuous probability distribution for a non-negative random variable. In spectroscopy, this distribution, with frequency as the dependent variable, is known as a van der Waals profile. It is a special case of the inverse-gamma distribution. It is a stable distribution.

A stochastic differential equation (SDE) is a differential equation in which one or more of the terms is a stochastic process, resulting in a solution which is also a stochastic process. SDEs have many applications throughout pure mathematics and are used to model various behaviours of stochastic models such as stock prices, random growth models or physical systems that are subjected to thermal fluctuations.

In statistics and probability theory, a point process or point field is a collection of mathematical points randomly located on a mathematical space such as the real line or Euclidean space. Point processes can be used for spatial data analysis, which is of interest in such diverse disciplines as forestry, plant ecology, epidemiology, geography, seismology, materials science, astronomy, telecommunications, computational neuroscience, economics and others.

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

In mathematics — specifically, in stochastic analysis — the infinitesimal generator of a Feller process is a Fourier multiplier operator that encodes a great deal of information about the process.

In mathematics, the spectral theory of ordinary differential equations is the part of spectral theory concerned with the determination of the spectrum and eigenfunction expansion associated with a linear ordinary differential equation. In his dissertation, Hermann Weyl generalized the classical Sturm–Liouville theory on a finite closed interval to second order differential operators with singularities at the endpoints of the interval, possibly semi-infinite or infinite. Unlike the classical case, the spectrum may no longer consist of just a countable set of eigenvalues, but may also contain a continuous part. In this case the eigenfunction expansion involves an integral over the continuous part with respect to a spectral measure, given by the Titchmarsh–Kodaira formula. The theory was put in its final simplified form for singular differential equations of even degree by Kodaira and others, using von Neumann's spectral theorem. It has had important applications in quantum mechanics, operator theory and harmonic analysis on semisimple Lie groups.

Financial models with long-tailed distributions and volatility clustering have been introduced to overcome problems with the realism of classical financial models. These classical models of financial time series typically assume homoskedasticity and normality cannot explain stylized phenomena such as skewness, heavy tails, and volatility clustering of the empirical asset returns in finance. In 1963, Benoit Mandelbrot first used the stable distribution to model the empirical distributions which have the skewness and heavy-tail property. Since -stable distributions have infinite -th moments for all , the tempered stable processes have been proposed for overcoming this limitation of the stable distribution.

Least-squares support-vector machines (LS-SVM) for statistics and in statistical modeling, are least-squares versions of support-vector machines (SVM), which are a set of related supervised learning methods that analyze data and recognize patterns, and which are used for classification and regression analysis. In this version one finds the solution by solving a set of linear equations instead of a convex quadratic programming (QP) problem for classical SVMs. Least-squares SVM classifiers were proposed by Johan Suykens and Joos Vandewalle. LS-SVMs are a class of kernel-based learning methods.

Contact mechanics is the study of the deformation of solids that touch each other at one or more points. This can be divided into compressive and adhesive forces in the direction perpendicular to the interface, and frictional forces in the tangential direction. Frictional contact mechanics is the study of the deformation of bodies in the presence of frictional effects, whereas frictionless contact mechanics assumes the absence of such effects.

Stochastic portfolio theory (SPT) is a mathematical theory for analyzing stock market structure and portfolio behavior introduced by E. Robert Fernholz in 2002. It is descriptive as opposed to normative, and is consistent with the observed behavior of actual markets. Normative assumptions, which serve as a basis for earlier theories like modern portfolio theory (MPT) and the capital asset pricing model (CAPM), are absent from SPT.

The generalized functional linear model (GFLM) is an extension of the generalized linear model (GLM) that allows one to regress univariate responses of various types on functional predictors, which are mostly random trajectories generated by a square-integrable stochastic processes. Similarly to GLM, a link function relates the expected value of the response variable to a linear predictor, which in case of GFLM is obtained by forming the scalar product of the random predictor function with a smooth parameter function . Functional Linear Regression, Functional Poisson Regression and Functional Binomial Regression, with the important Functional Logistic Regression included, are special cases of GFLM. Applications of GFLM include classification and discrimination of stochastic processes and functional data.

In physics and mathematics, the Klein–Kramers equation or sometimes referred as Kramers–Chandrasekhar equation is a partial differential equation that describes the probability density function f of a Brownian particle in phase space (r, p). It is a special case of the Fokker–Planck equation.

References

  1. 1 2 3 4 5 6 7 8 Li, Zenghu (2011), Li, Zenghu (ed.), "Measure-Valued Branching Processes", Measure-Valued Branching Markov Processes, Berlin, Heidelberg: Springer, pp. 29–56, doi:10.1007/978-3-642-15004-3_2, ISBN   978-3-642-15004-3 , retrieved 2022-12-20
  2. 1 2 Etheridge, Alison (2000). An introduction to superprocesses. Providence, RI: American Mathematical Society. ISBN   0-8218-2706-5. OCLC   44270365.