Random graph

Last updated

In mathematics, random graph is the general term to refer to probability distributions over graphs. Random graphs may be described simply by a probability distribution, or by a random process which generates them. [1] [2] The theory of random graphs lies at the intersection between graph theory and probability theory. From a mathematical perspective, random graphs are used to answer questions about the properties of typical graphs. Its practical applications are found in all areas in which complex networks need to be modeled – many random graph models are thus known, mirroring the diverse types of complex networks encountered in different areas. In a mathematical context, random graph refers almost exclusively to the Erdős–Rényi random graph model. In other contexts, any graph model may be referred to as a random graph.

Contents

Models

A random graph is obtained by starting with a set of n isolated vertices and adding successive edges between them at random. The aim of the study in this field is to determine at what stage a particular property of the graph is likely to arise. [3] Different random graph models produce different probability distributions on graphs. Most commonly studied is the one proposed by Edgar Gilbert but often called the Erdős–Rényi model, denoted G(n,p). In it, every possible edge occurs independently with probability 0 < p < 1. The probability of obtaining any one particular random graph with m edges is with the notation . [4]

A closely related model, also called the Erdős–Rényi model and denoted G(n,M), assigns equal probability to all graphs with exactly M edges. With 0 ≤ MN, G(n,M) has elements and every element occurs with probability . [3] The G(n,M) model can be viewed as a snapshot at a particular time (M) of the random graph process, a stochastic process that starts with n vertices and no edges, and at each step adds one new edge chosen uniformly from the set of missing edges.

If instead we start with an infinite set of vertices, and again let every possible edge occur independently with probability 0 < p < 1, then we get an object G called an infinite random graph. Except in the trivial cases when p is 0 or 1, such a G almost surely has the following property:

Given any n + m elements , there is a vertex c in V that is adjacent to each of and is not adjacent to any of .

It turns out that if the vertex set is countable then there is, up to isomorphism, only a single graph with this property, namely the Rado graph. Thus any countably infinite random graph is almost surely the Rado graph, which for this reason is sometimes called simply the random graph. However, the analogous result is not true for uncountable graphs, of which there are many (nonisomorphic) graphs satisfying the above property.

Another model, which generalizes Gilbert's random graph model, is the random dot-product model. A random dot-product graph associates with each vertex a real vector. The probability of an edge uv between any vertices u and v is some function of the dot product uv of their respective vectors.

The network probability matrix models random graphs through edge probabilities, which represent the probability that a given edge exists for a specified time period. This model is extensible to directed and undirected; weighted and unweighted; and static or dynamic graphs structure.

For MpN, where N is the maximal number of edges possible, the two most widely used models, G(n,M) and G(n,p), are almost interchangeable. [5]

Random regular graphs form a special case, with properties that may differ from random graphs in general.

Once we have a model of random graphs, every function on graphs, becomes a random variable. The study of this model is to determine if, or at least estimate the probability that, a property may occur. [4]

Terminology

The term 'almost every' in the context of random graphs refers to a sequence of spaces and probabilities, such that the error probabilities tend to zero. [4]

Properties

The theory of random graphs studies typical properties of random graphs, those that hold with high probability for graphs drawn from a particular distribution. For example, we might ask for a given value of and what the probability is that is connected. In studying such questions, researchers often concentrate on the asymptotic behavior of random graphsthe values that various probabilities converge to as grows very large. Percolation theory characterizes the connectedness of random graphs, especially infinitely large ones.

Percolation is related to the robustness of the graph (called also network). Given a random graph of nodes and an average degree . Next we remove randomly a fraction of nodes and leave only a fraction . There exists a critical percolation threshold below which the network becomes fragmented while above a giant connected component exists. [1] [5] [6] [7] [8]

Localized percolation refers to removing a node its neighbors, next nearest neighbors etc. until a fraction of of nodes from the network is removed. It was shown that for random graph with Poisson distribution of degrees exactly as for random removal.

Random graphs are widely used in the probabilistic method, where one tries to prove the existence of graphs with certain properties. The existence of a property on a random graph can often imply, via the Szemerédi regularity lemma, the existence of that property on almost all graphs.

In random regular graphs, are the set of -regular graphs with such that and are the natural numbers, , and is even. [3]

The degree sequence of a graph in depends only on the number of edges in the sets [3]

If edges, in a random graph, is large enough to ensure that almost every has minimum degree at least 1, then almost every is connected and, if is even, almost every has a perfect matching. In particular, the moment the last isolated vertex vanishes in almost every random graph, the graph becomes connected. [3]

Almost every graph process on an even number of vertices with the edge raising the minimum degree to 1 or a random graph with slightly more than edges and with probability close to 1 ensures that the graph has a complete matching, with exception of at most one vertex.

For some constant , almost every labeled graph with vertices and at least edges is Hamiltonian. With the probability tending to 1, the particular edge that increases the minimum degree to 2 makes the graph Hamiltonian.

Properties of random graph may change or remain invariant under graph transformations. Mashaghi A. et al., for example, demonstrated that a transformation which converts random graphs to their edge-dual graphs (or line graphs) produces an ensemble of graphs with nearly the same degree distribution, but with degree correlations and a significantly higher clustering coefficient. [9]

Colouring

Given a random graph G of order n with the vertex V(G) = {1, ..., n}, by the greedy algorithm on the number of colors, the vertices can be colored with colors 1, 2, ... (vertex 1 is colored 1, vertex 2 is colored 1 if it is not adjacent to vertex 1, otherwise it is colored 2, etc.). [3] The number of proper colorings of random graphs given a number of q colors, called its chromatic polynomial, remains unknown so far. The scaling of zeros of the chromatic polynomial of random graphs with parameters n and the number of edges m or the connection probability p has been studied empirically using an algorithm based on symbolic pattern matching. [10]

Random trees

A random tree is a tree or arborescence that is formed by a stochastic process. In a large range of random graphs of order n and size M(n) the distribution of the number of tree components of order k is asymptotically Poisson. Types of random trees include uniform spanning tree, random minimum spanning tree, random binary tree, treap, rapidly exploring random tree, Brownian tree, and random forest.

Conditional random graphs

Consider a given random graph model defined on the probability space and let be a real valued function which assigns to each graph in a vector of m properties. For a fixed , conditional random graphs are models in which the probability measure assigns zero probability to all graphs such that '.

Special cases are conditionally uniform random graphs, where assigns equal probability to all the graphs having specified properties. They can be seen as a generalization of the Erdős–Rényi model G(n,M), when the conditioning information is not necessarily the number of edges M, but whatever other arbitrary graph property . In this case very few analytical results are available and simulation is required to obtain empirical distributions of average properties.

History

The earliest use of a random graph model was by Helen Hall Jennings and Jacob Moreno in 1938 where a "chance sociogram" (a directed Erdős-Rényi model) was considered in studying comparing the fraction of reciprocated links in their network data with the random model. [11] Another use, under the name "random net", was by Ray Solomonoff and Anatol Rapoport in 1951, using a model of directed graphs with fixed out-degree and randomly chosen attachments to other vertices. [12]

The Erdős–Rényi model of random graphs was first defined by Paul Erdős and Alfréd Rényi in their 1959 paper "On Random Graphs" [8] and independently by Gilbert in his paper "Random graphs". [6]

See also

Related Research Articles

<span class="mw-page-title-main">Graph theory</span> Area of discrete mathematics

In mathematics and computer science, graph theory is the study of graphs, which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of vertices which are connected by edges. A distinction is made between undirected graphs, where edges link two vertices symmetrically, and directed graphs, where edges link two vertices asymmetrically. Graphs are one of the principal objects of study in discrete mathematics.

<span class="mw-page-title-main">Percolation theory</span> Mathematical theory on behavior of connected clusters in a random graph

In statistical physics and mathematics, percolation theory describes the behavior of a network when nodes or links are added. This is a geometric type of phase transition, since at a critical fraction of addition the network of small, disconnected clusters merge into significantly larger connected, so-called spanning clusters. The applications of percolation theory to materials science and in many other disciplines are discussed here and in the articles Network theory and Percolation.

<span class="mw-page-title-main">Scale-free network</span> Network whose degree distribution follows a power law

A scale-free network is a network whose degree distribution follows a power law, at least asymptotically. That is, the fraction P(k) of nodes in the network having k connections to other nodes goes for large values of k as

<span class="mw-page-title-main">Component (graph theory)</span> Maximal subgraph whose vertices can reach each other

In graph theory, a component of an undirected graph is a connected subgraph that is not part of any larger connected subgraph. The components of any graph partition its vertices into disjoint sets, and are the induced subgraphs of those sets. A graph that is itself connected has exactly one component, consisting of the whole graph. Components are sometimes called connected components.

<span class="mw-page-title-main">Extremal graph theory</span>

Extremal graph theory is a branch of combinatorics, itself an area of mathematics, that lies at the intersection of extremal combinatorics and graph theory. In essence, extremal graph theory studies how global properties of a graph influence local substructure. Results in extremal graph theory deal with quantitative connections between various graph properties, both global and local, and problems in extremal graph theory can often be formulated as optimization problems: how big or small a parameter of a graph can be, given some constraints that the graph has to satisfy? A graph that is an optimal solution to such an optimization problem is called an extremal graph, and extremal graphs are important objects of study in extremal graph theory.

In graph theory, a clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster together. Evidence suggests that in most real-world networks, and in particular social networks, nodes tend to create tightly knit groups characterised by a relatively high density of ties; this likelihood tends to be greater than the average probability of a tie randomly established between two nodes.

<span class="mw-page-title-main">Giant component</span> Large connected component of a random graph

In network theory, a giant component is a connected component of a given random graph that contains a significant fraction of the entire graph's vertices.

<span class="mw-page-title-main">Rado graph</span> Infinite graph containing all countable graphs

In the mathematical field of graph theory, the Rado graph, Erdős–Rényi graph, or random graph is a countably infinite graph that can be constructed by choosing independently at random for each pair of its vertices whether to connect the vertices by an edge. The names of this graph honor Richard Rado, Paul Erdős, and Alfréd Rényi, mathematicians who studied it in the early 1960s; it appears even earlier in the work of Wilhelm Ackermann. The Rado graph can also be constructed non-randomly, by symmetrizing the membership relation of the hereditarily finite sets, by applying the BIT predicate to the binary representations of the natural numbers, or as an infinite Paley graph that has edges connecting pairs of prime numbers congruent to 1 mod 4 that are quadratic residues modulo each other.

A random r-regular graph is a graph selected from , which denotes the probability space of all r-regular graphs on vertices, where and is even. It is therefore a particular kind of random graph, but the regularity restriction significantly alters the properties that will hold, since most graphs are not regular.

<span class="mw-page-title-main">Erdős–Rényi model</span> Two closely related models for generating random graphs

In the mathematical field of graph theory, the Erdős–Rényi model refers to one of two closely related models for generating random graphs or the evolution of a random network. These models are named after Hungarian mathematicians Paul Erdős and Alfréd Rényi, who introduced one of the models in 1959. Edgar Gilbert introduced the other model contemporaneously with and independently of Erdős and Rényi. In the model of Erdős and Rényi, all graphs on a fixed vertex set with a fixed number of edges are equally likely. In the model introduced by Gilbert, also called the Erdős–Rényi–Gilbert model, each edge has a fixed probability of being present or absent, independently of the other edges. These models can be used in the probabilistic method to prove the existence of graphs satisfying various properties, or to provide a rigorous definition of what it means for a property to hold for almost all graphs.

<span class="mw-page-title-main">Random geometric graph</span> In graph theory, the mathematically simplest spatial network

In graph theory, a random geometric graph (RGG) is the mathematically simplest spatial network, namely an undirected graph constructed by randomly placing N nodes in some metric space and connecting two nodes by a link if and only if their distance is in a given range, e.g. smaller than a certain neighborhood radius, r.

<span class="mw-page-title-main">Network science</span> Academic field

Network science is an academic field which studies complex networks such as telecommunication networks, computer networks, biological networks, cognitive and semantic networks, and social networks, considering distinct elements or actors represented by nodes and the connections between the elements or actors as links. The field draws on theories and methods including graph theory from mathematics, statistical mechanics from physics, data mining and information visualization from computer science, inferential modeling from statistics, and social structure from sociology. The United States National Research Council defines network science as "the study of network representations of physical, biological, and social phenomena leading to predictive models of these phenomena."

<span class="mw-page-title-main">Asymmetric graph</span> Undirected graph with no non-trivial symmetries

In graph theory, a branch of mathematics, an undirected graph is called an asymmetric graph if it has no nontrivial symmetries.

<span class="mw-page-title-main">Graphon</span>

In graph theory and statistics, a graphon is a symmetric measurable function , that is important in the study of dense graphs. Graphons arise both as a natural notion for the limit of a sequence of dense graphs, and as the fundamental defining objects of exchangeable random graph models. Graphons are tied to dense graphs by the following pair of observations: the random graph models defined by graphons give rise to dense graphs almost surely, and, by the regularity lemma, graphons capture the structure of arbitrary large dense graphs.

<span class="mw-page-title-main">Degeneracy (graph theory)</span> Measurement of graph sparsity

In graph theory, a k-degenerate graph is an undirected graph in which every subgraph has a vertex of degree at most k: that is, some vertex in the subgraph touches k or fewer of the subgraph's edges. The degeneracy of a graph is the smallest value of k for which it is k-degenerate. The degeneracy of a graph is a measure of how sparse it is, and is within a constant factor of other sparsity measures such as the arboricity of a graph.

Edgar Nelson Gilbert was an American mathematician and coding theorist, a longtime researcher at Bell Laboratories whose accomplishments include the Gilbert–Varshamov bound in coding theory, the Gilbert–Elliott model of bursty errors in signal transmission, and the Erdős–Rényi model for random graphs.

<span class="mw-page-title-main">Planted clique</span> Complete subgraph added to a random graph

In computational complexity theory, a planted clique or hidden clique in an undirected graph is a clique formed from another graph by selecting a subset of vertices and adding edges between each pair of vertices in the subset. The planted clique problem is the algorithmic problem of distinguishing random graphs from graphs that have a planted clique. This is a variation of the clique problem; it may be solved in quasi-polynomial time but is conjectured not to be solvable in polynomial time for intermediate values of the clique size. The conjecture that no polynomial time solution exists is called the planted clique conjecture; it has been used as a computational hardness assumption.

<span class="mw-page-title-main">Configuration model</span>

In network science, the configuration model is a method for generating random networks from a given degree sequence. It is widely used as a reference model for real-life social networks, because it allows the modeler to incorporate arbitrary degree distributions.

<span class="mw-page-title-main">Maximum-entropy random graph model</span>

Maximum-entropy random graph models are random graph models used to study complex networks subject to the principle of maximum entropy under a set of structural constraints, which may be global, distributional, or local.

The Strange Logic of Random Graphs is a book on zero-one laws for random graphs. It was written by Joel Spencer and published in 2001 by Springer-Verlag as volume 22 of their book series Algorithms and Combinatorics.

References

  1. 1 2 Bollobás, Béla (2001). Random Graphs (2nd ed.). Cambridge University Press.
  2. Frieze, Alan; Karonski, Michal (2015). Introduction to Random Graphs. Cambridge University Press.
  3. 1 2 3 4 5 6 Béla Bollobás, Random Graphs, 1985, Academic Press Inc., London Ltd.
  4. 1 2 3 Béla Bollobás, Probabilistic Combinatorics and Its Applications, 1991, Providence, RI: American Mathematical Society.
  5. 1 2 Bollobas, B. and Riordan, O.M. "Mathematical results on scale-free random graphs" in "Handbook of Graphs and Networks" (S. Bornholdt and H.G. Schuster (eds)), Wiley VCH, Weinheim, 1st ed., 2003
  6. 1 2 Gilbert, E. N. (1959), "Random graphs", Annals of Mathematical Statistics, 30 (4): 1141–1144, doi: 10.1214/aoms/1177706098 .
  7. Newman, M. E. J. (2010). Networks: An Introduction. Oxford.
  8. 1 2 Erdős, P. Rényi, A (1959) "On Random Graphs I" in Publ. Math. Debrecen 6, p. 290297 Archived 2020-08-07 at the Wayback Machine
  9. Ramezanpour, A.; Karimipour, V.; Mashaghi, A. (2003). "Generating correlated networks from uncorrelated ones". Phys. Rev. E. 67 (46107): 046107. arXiv: cond-mat/0212469 . Bibcode:2003PhRvE..67d6107R. doi:10.1103/PhysRevE.67.046107. PMID   12786436. S2CID   33054818.
  10. Van Bussel, Frank; Ehrlich, Christoph; Fliegner, Denny; Stolzenberg, Sebastian; Timme, Marc (2010). "Chromatic Polynomials of Random Graphs". J. Phys. A: Math. Theor. 43 (17): 175002. arXiv: 1709.06209 . Bibcode:2010JPhA...43q5002V. doi:10.1088/1751-8113/43/17/175002. S2CID   15723612.
  11. Moreno, Jacob L; Jennings, Helen Hall (Jan 1938). "Statistics of Social Configurations" (PDF). Sociometry. 1 (3/4): 342–374. doi:10.2307/2785588. JSTOR   2785588.
  12. Solomonoff, Ray; Rapoport, Anatol (June 1951). "Connectivity of random nets". Bulletin of Mathematical Biophysics. 13 (2): 107–117. doi:10.1007/BF02478357.