Doob decomposition theorem

Last updated

In the theory of stochastic processes in discrete time, a part of the mathematical theory of probability, the Doob decomposition theorem gives a unique decomposition of every adapted and integrable stochastic process as the sum of a martingale and a predictable process (or "drift") starting at zero. The theorem was proved by and is named for Joseph L. Doob. [1]

Contents

The analogous theorem in the continuous-time case is the Doob–Meyer decomposition theorem.

Statement

Let be a probability space, I = {0, 1, 2, ..., N} with or a finite or an infinite index set, a filtration of , and X = (Xn)nI an adapted stochastic process with E[|Xn|] < ∞ for all nI. Then there exist a martingale M = (Mn)nI and an integrable predictable process A = (An)nI starting with A0 = 0 such that Xn = Mn + An for every nI. Here predictable means that An is -measurable for every nI \ {0}. This decomposition is almost surely unique. [2] [3] [4]

Remark

The theorem is valid word for word also for stochastic processes X taking values in the d-dimensional Euclidean space or the complex vector space . This follows from the one-dimensional version by considering the components individually.

Proof

Existence

Using conditional expectations, define the processes A and M, for every nI, explicitly by

 

 

 

 

(1)

and

 

 

 

 

(2)

where the sums for n = 0 are empty and defined as zero. Here A adds up the expected increments of X, and M adds up the surprises, i.e., the part of every Xk that is not known one time step before. Due to these definitions, An+1 (if n + 1 ∈ I) and Mn are Fn-measurable because the process X is adapted, E[|An|] < ∞ and E[|Mn|] < ∞ because the process X is integrable, and the decomposition Xn = Mn + An is valid for every nI. The martingale property

     a.s.

also follows from the above definition ( 2 ), for every nI \ {0}.

Uniqueness

To prove uniqueness, let X = M' + A' be an additional decomposition. Then the process Y := MM' = A'A is a martingale, implying that

    a.s.,

and also predictable, implying that

    a.s.

for any nI \ {0}. Since Y0 = A'0A0 = 0 by the convention about the starting point of the predictable processes, this implies iteratively that Yn = 0 almost surely for all nI, hence the decomposition is almost surely unique.

Corollary

A real-valued stochastic process X is a submartingale if and only if it has a Doob decomposition into a martingale M and an integrable predictable process A that is almost surely increasing. [5] It is a supermartingale, if and only if A is almost surely decreasing.

Proof

If X is a submartingale, then

    a.s.

for all kI \ {0}, which is equivalent to saying that every term in definition ( 1 ) of A is almost surely positive, hence A is almost surely increasing. The equivalence for supermartingales is proved similarly.

Example

Let X = (Xn)n be a sequence in independent, integrable, real-valued random variables. They are adapted to the filtration generated by the sequence, i.e. Fn = σ(X0, . . . , Xn) for all n. By ( 1 ) and ( 2 ), the Doob decomposition is given by

and

If the random variables of the original sequence X have mean zero, this simplifies to

    and    

hence both processes are (possibly time-inhomogeneous) random walks. If the sequence X = (Xn)n consists of symmetric random variables taking the values +1 and −1, then X is bounded, but the martingale M and the predictable process A are unbounded simple random walks (and not uniformly integrable), and Doob's optional stopping theorem might not be applicable to the martingale M unless the stopping time has a finite expectation.

Application

In mathematical finance, the Doob decomposition theorem can be used to determine the largest optimal exercise time of an American option. [6] [7] Let X = (X0, X1, . . . , XN) denote the non-negative, discounted payoffs of an American option in a N-period financial market model, adapted to a filtration (F0, F1, . . . , FN), and let denote an equivalent martingale measure. Let U = (U0, U1, . . . , UN) denote the Snell envelope of X with respect to . The Snell envelope is the smallest -supermartingale dominating X [8] and in a complete financial market it represents the minimal amount of capital necessary to hedge the American option up to maturity. [9] Let U = M + A denote the Doob decomposition with respect to of the Snell envelope U into a martingale M = (M0, M1, . . . , MN) and a decreasing predictable process A = (A0, A1, . . . , AN) with A0 = 0. Then the largest stopping time to exercise the American option in an optimal way [10] [11] is

Since A is predictable, the event {τmax = n} = {An = 0, An+1 < 0} is in Fn for every n ∈ {0, 1, . . . , N − 1}, hence τmax is indeed a stopping time. It gives the last moment before the discounted value of the American option will drop in expectation; up to time τmax the discounted value process U is a martingale with respect to .

Generalization

The Doob decomposition theorem can be generalized from probability spaces to σ-finite measure spaces. [12]

Citations

  1. Doob (1953), see ( Doob 1990 , pp. 296−298)
  2. Durrett (2010)
  3. ( Föllmer & Schied 2011 , Proposition 6.1)
  4. ( Williams 1991 , Section 12.11, part (a) of the Theorem)
  5. ( Williams 1991 , Section 12.11, part (b) of the Theorem)
  6. ( Lamberton & Lapeyre 2008 , Chapter 2: Optimal stopping problem and American options)
  7. ( Föllmer & Schied 2011 , Chapter 6: American contingent claims)
  8. ( Föllmer & Schied 2011 , Proposition 6.10)
  9. ( Föllmer & Schied 2011 , Theorem 6.11)
  10. ( Lamberton & Lapeyre 2008 , Proposition 2.3.2)
  11. ( Föllmer & Schied 2011 , Theorem 6.21)
  12. ( Schilling 2005 , Problem 23.11)

Related Research Articles

In probability theory, there exist several different notions of convergence of sequences of random variables. The different notions of convergence capture different properties about the sequence, with some notions of convergence being stronger than others. For example, convergence in distribution tells us about the limit distribution of a sequence of random variables. This is a weaker notion than convergence in probability, which tells us about the value a random variable will take, rather than just the distribution.

<span class="mw-page-title-main">Martingale (probability theory)</span> Model in probability theory

In probability theory, a martingale is a sequence of random variables for which, at a particular time, the conditional expectation of the next value in the sequence is equal to the present value, regardless of all prior values.

In probability theory, the Azuma–Hoeffding inequality gives a concentration result for the values of martingales that have bounded differences.

In probability theory and related fields, Malliavin calculus is a set of mathematical techniques and ideas that extend the mathematical field of calculus of variations from deterministic functions to stochastic processes. In particular, it allows the computation of derivatives of random variables. Malliavin calculus is also called the stochastic calculus of variations. P. Malliavin first initiated the calculus on infinite dimensional space. Then, the significant contributors such as S. Kusuoka, D. Stroock, J-M. Bismut, S. Watanabe, I. Shigekawa, and so on finally completed the foundations.

<span class="mw-page-title-main">Stopping time</span> Time at which a random variable stops exhibiting a behavior of interest

In probability theory, in particular in the study of stochastic processes, a stopping time is a specific type of “random time”: a random variable whose value is interpreted as the time at which a given stochastic process exhibits a certain behavior of interest. A stopping time is often defined by a stopping rule, a mechanism for deciding whether to continue or stop a process on the basis of the present position and past events, and which will almost always lead to a decision to stop at some finite time.

<span class="mw-page-title-main">Itô calculus</span> Calculus of stochastic differential equations

Itô calculus, named after Kiyosi Itô, extends the methods of calculus to stochastic processes such as Brownian motion. It has important applications in mathematical finance and stochastic differential equations.

In mathematics, quadratic variation is used in the analysis of stochastic processes such as Brownian motion and other martingales. Quadratic variation is just one kind of variation of a process.

The Doob–Meyer decomposition theorem is a theorem in stochastic calculus stating the conditions under which a submartingale may be decomposed in a unique way as the sum of a martingale and an increasing predictable process. It is named for Joseph L. Doob and Paul-André Meyer.

In probability theory, an empirical process is a stochastic process that characterizes the deviation of the empirical distribution function its expectation. In mean field theory, limit theorems are considered and generalise the central limit theorem for empirical measures. Applications of the theory of empirical processes arise in non-parametric statistics.

In probability theory, the martingale representation theorem states that a random variable that is measurable with respect to the filtration generated by a Brownian motion can be written in terms of an Itô integral with respect to this Brownian motion.

In the mathematical theory of probability, a Doob martingale is a stochastic process that approximates a given random variable and has the martingale property with respect to the given filtration. It may be thought of as the evolving sequence of best approximations to the random variable based on information accumulated up to a certain time.

In probability theory, a martingale difference sequence (MDS) is related to the concept of the martingale. A stochastic series X is an MDS if its expectation with respect to the past is zero. Formally, consider an adapted sequence on a probability space . is an MDS if it satisfies the following two conditions:

In the study of stochastic processes, an adapted process is one that cannot "see into the future". An informal interpretation is that X is adapted if and only if, for every realisation and every n, Xn is known at time n. The concept of an adapted process is essential, for instance, in the definition of the Itō integral, which only makes sense if the integrand is an adapted process.

In mathematics, a local martingale is a type of stochastic process, satisfying the localized version of the martingale property. Every martingale is a local martingale; every bounded local martingale is a martingale; in particular, every local martingale that is bounded from below is a supermartingale, and every local martingale that is bounded from above is a submartingale; however, in general a local martingale is not a martingale, because its expectation can be distorted by large values of small probability. In particular, a driftless diffusion process is a local martingale, but not necessarily a martingale.

In mathematics, Doob's martingale inequality, also known as Kolmogorov’s submartingale inequality is a result in the study of stochastic processes. It gives a bound on the probability that a submartingale exceeds any given value over a given interval of time. As the name suggests, the result is usually given in the case that the process is a martingale, but the result is also valid for submartingales.

In probability theory, a real valued stochastic process X is called a semimartingale if it can be decomposed as the sum of a local martingale and a càdlàg adapted finite-variation process. Semimartingales are "good integrators", forming the largest class of processes with respect to which the Itô integral and the Stratonovich integral can be defined.

In mathematics – specifically, in the theory of stochastic processes – Doob's martingale convergence theorems are a collection of results on the limits of supermartingales, named after the American mathematician Joseph L. Doob. Informally, the martingale convergence theorem typically refers to the result that any supermartingale satisfying a certain boundedness condition must converge. One may think of supermartingales as the random variable analogues of non-increasing sequences; from this perspective, the martingale convergence theorem is a random variable analogue of the monotone convergence theorem, which states that any bounded monotone sequence converges. There are symmetric results for submartingales, which are analogous to non-decreasing sequences.

In probability theory, the optional stopping theorem says that, under certain conditions, the expected value of a martingale at a stopping time is equal to its initial expected value. Since martingales can be used to model the wealth of a gambler participating in a fair game, the optional stopping theorem says that, on average, nothing can be gained by stopping play based on the information obtainable so far. Certain conditions are necessary for this result to hold true. In particular, the theorem applies to doubling strategies.

The Snell envelope, used in stochastics and mathematical finance, is the smallest supermartingale dominating a stochastic process. The Snell envelope is named after James Laurie Snell.

In probability theory, Kramkov's optional decomposition theorem is a mathematical theorem on the decomposition of a positive supermartingale with respect to a family of equivalent martingale measures into the form

References